The persistent effect of competition on prosociality

Fabian Kosse (University of Würzburg)

Ranjita Rajan (Karta Initiative)

Michela Tincani (University College London)

Teaching slides RCT ID: AEARCTR-0002288

• Prosociality: positive other-regarding behaviors and beliefs

Composite measure covering altruism, reciprocity, and trust

- Prosociality: positive other-regarding behaviors and beliefs
 - Composite measure covering altruism, reciprocity, and trust
- Prosociality is a key driver of social interactions and affects outcomes at all levels:
 - Trade and growth (e.g. Guiso et al. 2009; Algan & Cahuc 2010)
 - Happiness, health, employment, wages
 (e.g. Deming 2018; Becker et al. 2012; Kosse & Tincani 2020)

- Prosociality: positive other-regarding behaviors and beliefs
 - Composite measure covering altruism, reciprocity, and trust
- Prosociality is a key driver of social interactions and affects outcomes at all levels:
 - Trade and growth (e.g. Guiso et al. 2009; Algan & Cahuc 2010)
 - Happiness, health, employment, wages
 (e.g. Deming 2018; Becker et al. 2012; Kosse & Tincani 2020) •
- Where do individual differences in prosociality come from?
- How do policy interventions shape prosociality?

Determinants of prosociality

- Genetic differences: \sim 20% of variation (Cesarini et al. 2008, 2009)
- Enriching the social environment persistently **increases** prosociality (Rao 2019; Cappelen et al. 2020; Kosse et al. 2020) •

Determinants of prosociality

- Genetic differences: \sim 20% of variation (Cesarini et al. 2008, 2009)
- Enriching the social environment persistently **increases** prosociality (Rao 2019; Cappelen et al. 2020; Kosse et al. 2020) •
- Open question: Which aspects of the social environment attenuate the formation of prosociality?

Determinants of prosociality

- Genetic differences: \sim 20% of variation (Cesarini et al. 2008, 2009)
- Enriching the social environment persistently **increases** prosociality (Rao 2019; Cappelen et al. 2020; Kosse et al. 2020) •
- Open question: Which aspects of the social environment attenuate the formation of prosociality?
- \rightarrow Prime candidate: competition

Previous lit: competition/tournaments in firms

"There are incentives for uncooperative behavior in any firm that awards pay (...) on the basis of some relative comparison between employees." Lazear (1999)

Previous lit: competition/tournaments in firms

"There are incentives for uncooperative behavior in any firm that awards pay (...) on the basis of some relative comparison between employees." Lazear (1999)

Competition and sabotage

(e.g. Harbring & Irlenbusch 2011; Balafoutas et al. 2012; Chowdhury & Gürtler 2015)

• Competition and prosocial behavior

(e.g. Buser & Dreber 2016; Ter Meer 2014; Grosch et al. 2017)

Previous lit: competition/tournaments in firms

"There are incentives for uncooperative behavior in any firm that awards pay (...) on the basis of some relative comparison between employees." Lazear (1999)

Competition and sabotage

(e.g. Harbring & Irlenbusch 2011; Balafoutas et al. 2012; Chowdhury & Gürtler 2015)

• Competition and *prosocial behavior*

(e.g. Buser & Dreber 2016; Ter Meer 2014; Grosch et al. 2017)

ightarrow Competitive situations (within a group) ightarrow uncooperative behavior

This paper

Research question

Does *growing up* in a competitive environment *persistently* attenuate the formation of prosociality?

This paper

Research question

Does *growing up* in a competitive environment *persistently* attenuate the formation of prosociality?

Research setup

- 1. Field experiment: 2-year treatment period
- 2. Panel framework: baseline, endline & 4-year follow-up

Overview

- 1. The intervention (RCT): PACE in Chile
- 2. Data
- 3. Analyses
- 4. Conclusion

Overview

1. The intervention (RCT): PACE in Chile

2. Data

3. Analyses

4. Conclusion

Education and labor market situation in Chile

- High education earnings premium 🗩
- Low intergenerational mobility

Education and labor market situation in Chile

- High education earnings premium
- Low intergenerational mobility
- Series of social unrests since 2006
- Problem: admission to university is based on a centralized test (PSU)
 - Admission requirement: being above threshold
 - ~70% of students from low socio-economic status (SES) families take the test but less than 10% get admitted

The intervention: PACE

• 2014: PACE (program to provide effective access to higher education)

- Goal: allow the best low SES students to enter universities
- Target: schools with high share of students from low SES families
- Percentage plan: guaranteed uni admission for top 15% of school

The intervention: PACE

- 2014: PACE (program to provide effective access to higher education)
 - Goal: allow the best low SES students to enter universities
 - Target: schools with high share of students from low SES families
 - Percentage plan: guaranteed uni admission for top 15% of school
- 2016: Roll-out of PACE ightarrow MinEduc defined new set eligible schools
 - ▶ Budget constraints → randomized allocation (Cluster RCT)
 - ▶ 64 schools became part of PACE \rightarrow Treatment group
 - \blacktriangleright 64 schools did not become part of PACE ightarrow Control group

Access to university: with PACE and without PACE

Control group (no PACE)

- Admission based on centralized test (enrollment: \sim 8.5%)
 - Less competitive environment: relative comparisons within school do not matter

Access to university: with PACE and without PACE

Control group (no PACE)

- Admission based on centralized test (enrollment: \sim 8.5%)
 - Less competitive environment: relative comparisons within school do not matter

Treatment group (PACE)

- Admission based on centralized test
- PACE slots: admission for top 15% of school (GPA of grades 11 & 12)
 - More competitive environment: relative comparisons within school are decisive

Timing and Interpretation

Timing for the cohort under study

Timing and Interpretation

Timing for the cohort under study

Comparison between treatment and control group:

ightarrow Effect of living in a more competitive environment for **two years**

Manipulation check

Overview

- 1. The intervention (RCT): PACE in Chile
- 2. Data
- 3. Analyses
- 4. Conclusion

Data: sources and measures (1/2)

Data: sources and measures (1/2)

• Baseline: registry data

- ▶ Sample: 128 schools (*T* = 64, *C* = 64), > 8,000 students
- Measures: achievement test, socio-demographics
- Sample is balanced across treatment and control groups Comparison

Data: sources and measures (2/2)

Endline: own data collection in schools (paper & pencil survey)

- Sample: \sim 70% of enrolled students (at baseline)

 \sim 40 observations per school

 \rightarrow No selective attrition \frown Analysis (\rightarrow IPW)

Key measure: prosociality

Data: sources and measures (2/2)

Endline: own data collection in schools (paper & pencil survey)

- Sample: \sim 70% of enrolled students (at baseline)

 \sim 40 observations per school

- \rightarrow No selective attrition ightarrow Analysis (\rightarrow IPW)
- Key measure: prosociality

4-year follow-up: own data collection (online/phone survey)

- Sample: \sim 20% of endline sample
 - \sim 8 observations per school
 - \rightarrow No selective attrition \frown Analysis (\rightarrow IPW)
 - \rightarrow Power: Independent observations, within cluster corr, items
- Key measure: prosociality

Data: measuring prosociality (endline)

As in Kosse & Tincani (2020, Nature Comm.):

- Survey: items on altruism, positive reciprocity and trust (GPS, Falk et al. 2016/18)
 Details
 - Generally framed items, not limited to a specific context
 e.g. "When someone does me a favor, I am willing to return it"
- Measure: $PCA \rightarrow first \ component$
 - Trait-like level of stability
 - High predictive power for labor market outcomes

Data: measuring prosociality (4-year follow-up)

Two sets of items

- Generally framed: same at endline (GPS) + additional (GPS/WVS)
- Focus on former high-school peers (adapted GPS/WVS)

Three measures

- Combined prosociality measure: PCA using all items
 - $\blacktriangleright \ \ \mathsf{Minimizes} \ \mathsf{measurement} \ \mathsf{error} \to \mathsf{Maximizes} \ \mathsf{power}$
- General prosociality: PCA using generally framed items
- Prosociality towards former peers: PCA using items on former peers
 - General effect vs. effect on former peers only

Overview

- 1. The intervention (RCT): PACE in Chile
- 2. Data

3. Analyses

4. Conclusion

Results: the effect of PACE on prosociality (endline)

Results: the effect of PACE on prosociality (endline)

Results: the effect of PACE on prosociality (endline)

	Std. pro:	sociality at ag	ge 17/18
	(1)	(2)	(3)
Treatment dummy	-0.107** (0.053)	-0.112*** (0.041)	-0.113*** (0.043)
Achievement (at baseline, standardized)		0.108*** (0.015)	0.109*** (0.016)
Female		0.125*** (0.034)	0.131*** (0.035)
Very low SES dummy		0.017 (0.031)	0.019 (0.032)
Weights Observations	No 5,343	No 5,343	IPW 5,343

Coefficients OLS estimates. SE clustered at school level are shown in parentheses. Columns 2 and 3 includes the standard baseline controls from Tincani et al (2023): achievement, female, age, very low SES, never failed a grade and high school type. ***, **, * indicate significance at the 1%, 5% and 10% level, respectively. Lee bounds

Fabian Kosse

Results: the effect of PACE on facets of prosociality

	Standardized	Standardized	Standardized
	Altruism	Trust	Reciprocity
	(1)	(2)	(3)
Treatment dummy	-0.066	-0.067	-0.115
Original p-values	(0.113)	(0.019)	(0.004)
Two-stage q-values	[0.040]	[0.020]	[0.013]
Observations	5,343	5,343	5,343

Coefficients are ordinary least squares estimates. All regressions use the standard baseline controls. Original *p*-values are shown in (parentheses), false discovery rates in form of sharpened two-stage shown in [square brackets]. ***, **, * indicate significance at the 1%, 5% and 10% level.

Results: heterogeneity by gender

See also Gneezy et al. (2003) and Buser & Dreber (2016)

	Standardized prosociality	
	Females	Males
Treatment dummy	-0.082 (0.057)	-0.143*** (0.053)
Observations	2,507	2,836

Standard errors clustered at the school level. All regressions use the standard baseline controls and apply IPW. ***, **, * indicate significance at the 1%, 5% and 10% level, respectively.

Heterogeneity by rank

Interpretation: Tournament vs Teachers/Principals

- No TE on grading patterns
- No TE on teachers' effort and focus of instruction
- No TE on support offered to students
- No TE on assignment of students to classrooms
 - ightarrow Details: Tincani, Kosse, and Miglino (2023)

Results: 4-year follow-up

Results: 4-year follow-up

	Prosociality	(age 21/22,	standardized
Panel A: Joint measure of prosociality	(1)	(2)	(3)
Treatment dummy	-0.152**	-0.140**	-0.153**
	(0.067)	(0.064)	(0.069)
Panel B: General prosociality			
Treatment dummy	-0.126*	-0.118*	-0.135*
	(0.072)	(0.071)	(0.074)
Panel C: PS towards former schoolmates			
Treatment dummy	-0.132**	-0.122*	-0.129*
	(0.065)	(0.062)	(0.068)
Baseline controls	No	Yes	Yes
Weights	No	No	IPW
Observations	1,018	1,018	1,018

SEs clustered at the school level. ***, **, * indicate significance at the 1%, 5% and 10% level.

Overview

- 1. The intervention (RCT): PACE in Chile
- 2. Data
- 3. Analyses
- 4. Conclusion

Conclusion

a. Enduring exposure to a competitive environment attenuates the formation of prosociality \rightarrow persistent and general effect

Conclusion

- a. Enduring exposure to a competitive environment attenuates the formation of prosociality \rightarrow persistent and general effect
 - Adolescence is a formative period
 - $\blacktriangleright\,$ Laboratory and firm context \rightarrow field and education context

Conclusion

- a. Enduring exposure to a competitive environment attenuates the formation of prosociality \rightarrow persistent and general effect
 - Adolescence is a formative period
 - $\blacktriangleright\,$ Laboratory and firm context \rightarrow field and education context
- b. Policy perspective: unintended side effects of percentage plans
 - Optimal policy design

The persistent effect of competition on prosociality

Fabian Kosse (University of Würzburg)

Ranjita Rajan (Karta Initiative)

Michela Tincani (University College London)

Teaching slides RCT ID: AEARCTR-0002288 **Back-up slides**

Prosociality predicts life-outcomes

	Subj. health (5-point Likert) (1)	Happiness (11-p. Likert) (2)	Gross wage (hourly, in €) (3)	Unempl. (dummy) (4)	Education (in years) (5)
Std. prosociality	0.149***	0.462***	0.847***	-0.022***	0.492***
	(0.007)	(0.014)	(0.120)	(0.003)	(0.022)
Age (in years)	-0.021***	-0.004***	0.254***	-0.001**	-0.017***
	(0.000)	(0.001)	(0.011)	(0.000)	(0.001)
Female dummy	-0.115***	-0.150***	-4.569***	0.022***	-0.543***
	(0.013)	(0.026)	(0.239)	(0.006)	(0.042)
Observations	17,741	17,737	8,807	11,241	16,967
R ²	0.181	0.065	0.108	0.006	0.047

Kosse et al. (2020, JPE), SOEP data from 2003 to 2009, ***, **, * indicate significance at 1-,

5-, and 10-percent level, respectively. • Back

Income premia of prosociality around the world •••••

Income premia of prosociality (in percent of household income) around the world.

Kosse & Tincani (2020, Nature Comm.)

Fabian Kosse

The effect of mentoring ("Baloo and you") • Back

Kosse, Deckers, Pinger, Schildberg-Hörisch and Falk (2020, JPE)

Importance of University education in Chile • Book

Fabian Kosse

6 / 18

Intergenerational persistence in Chile • Back

Percentage of 24-45 year-old with tertiary education, by parental background

Data extracted from OECD. Statistics for years 2012 and 2015

Characteristics of the study population

	All students	Study population
Prioritario student	0.40	0.61
Mother's education	11.49	9.60
Father's education	11.43	9.38
HH income in 1000 CLP	600.10	291.66
SIMCE score (standardized)	0.00	-0.62
Rural	0.03	0.03
Santiago	0.30	0.17
Observations	194,377	8,944

Back

Descriptive statistics and balancing tests

Baseline variables	Mean of Control group	Difference Treatment - Control	N
Female	0.476	0.001 (0.054)	9,006
Age	17.54	0.031 (0.052)	9,006
SIMCE score	221.4	7.600 (5.256)	8,944
GPA (grade 10)	5.438	0.013 (0.035)	8,944
Very low SES	0.602	0.014 (0.020)	9,006
Mother's education (years)	9.553	0.081 (0.168)	6,000
Father's education (years)	9.320	0.115 (0.178)	5,722
HH income (in 1000 CLP)	284.0	14.33 (12.79)	6,018

SE clustered at school level. *p < 0.10, **p < 0.05, ***p < 0.01.

Attrition analysis

	А	vailable at endline (= 1 if yes (Outcome mean: 0.597))
	(1)	(2)	(3)
Treatment dummy	-0.044	-0.051	-0.011
	(0.036)	(0.036)	(0.038)
Achievement (at baseline std)		0.048***	0.067***
Achievement (at basetine, stu)		(0.013)	(0.010)
Fomalo		-0.027	0.011
remate		(0.023)	(0.025)
		-0.031**	-0.025
very low SES dummy		(0.012)	(0.017)
T			-0.031
Treatment x achievement			(0.022)
			-0.070
Treatment x female			(0.043)
T , , , , , , , , , , , , , , , , , , ,			-0.013
Treatment x very low SES dummy			(0.024)
Observations	9,006	8,944	8,944
R-squared	0.002	0.013	0.015

Standard errors clustered at the school level. ***, **, * indicate significance at the 1%, 5% and 10% level, respectively.

 	V o or
u a u	N I I S S
 210211	1.0.0.

Attrition analysis

	Avail	able at follow-up (= 1 if (Outcome mean: 0.114)	yes)
	(1)	(2)	(3)
Treatment dummy	0.010 (0.012)	0.003 (0.012)	0.013 (0.018)
Achievement (at baseline, std)		0.039*** (0.006)	0.044*** (0.007)
Female		0.016** (0.007)	0.015* (0.009)
Very low SES dummy		-0.028*** (0.008)	-0.018 (0.013)
Treatment x achievement			-0.008 (0.011)
Treatment x female			0.003 (0.015)
Treatment x very low SES dummy			-0.019 (0.016)
Observations R-squared	9,006 0.000	8,944 0.019	8,944 0.019

Standard errors clustered at the school level. ***, **, * indicate significance at the 1%, 5% and 10% level, respectively.

Fabian Kosse

Implementation of endline data collection **Dec**

- MinEduc sent letters of support \rightarrow all schools participated
- Project financed by a grant independently from MinEduc
- Data collection conducted by trained interviewers
- Paper & Pencil survey conducted in standardized seating order

Implementation of follow-up data collection **Deck**

- Implemented by a Chilean data collection agency
- Agreement to be contacted and contact data provided at endline
- Three step procedure
 - 1. Invitation via email/WhatsApp ightarrow online survey
 - 2. Phone interview
 - 3. Contact via social media ightarrow online survey (data collection still ongoing)

Validation of the GPS (Falk et al. 2016): trust & reciprocity

- **Step 1:** participants (*N* > 400) answer a large battery of survey items on trust and reciprocity
- Step 2: "investment game" (Berg et al. 1995) is played (one week apart)

Step 3: selection of items which best predict behavior

Step 4: cultural translations in 111 languages and dialects

Implemented GPS questions: "qualitative items"

"How well does each of the following statements describe you as a person?" (11-point Likert scale, see Falk et al. (2016, 2018) for details

- "I assume that people have only the best intentions" (trust)
 - Correlation with choice in experiment (1 week apart): 0.283
 - Test-retest-stability of choice in experiment (1 week apart): 0.599
- "When someone does me a favor, I am willing to return it" (pos. reciprocity)
 - Correlation with choice in experiment (1 week apart): 0.269
 - Test-retest-stability of choice in experiment (1 week apart): 0.434

Note: items are not framed in school context \rightarrow general instead of just in school behavior $(\mbox{\tiny Back})$

Manipulation check

	Competition in school (standardized)		
	Perceived by students (1)	Perceived by teachers (2)	
Treatment dummy	0.093** (0.045)	0.264* (0.158)	
Observations	4,246	165	

Table: Coefficients are ordinary least squares estimates. Standard errors clustered at school level are shown in parentheses. The dependent variables are standardized. The regression in Column 1 includes the standard baseline controls from Tincani et al (2023): achievement, female, age, very low SES, never failed a grade and high school type. The regression in Column 2 includes controls for the following student and teacher characteristics: shares of female and very low SES students, school-cohort average achievement scores (at baseline), teachers' gender and age. ***, **, * indicate significance at the 1%, 5% and 10% level, respectively.

Robustness check: Lee bounds

	Standardized prosociality		
	Lower bound	Upper bound	
Treatment dummy	-0.272	-0.015	
Number of obs. Number of selected obs.	8,944 5,343	8,944 5,343	

The bounds are estimated using the trimming procedure suggested by Lee (2009). Instead of correcting point estimates, this approach yields interval estimates of effect sizes based on extreme assumptions about selection. Back

Results: heterogeneity by baseline rank 🔤

See also Gürtler & Münster (2010) and Gürtler, Münster & Nieken (2013)

Results: heterogeneity by baseline rank 🚥

See also Gürtler & Münster (2010) and Gürtler, Münster & Nieken (2013)

ightarrow Evolution of cooperative behavior (Fehr & Fischbacher 2003)