Reconciling Relational Contracting and Hold-up: A Model of Repeated Negotiations

Susanne Goldlücke (Konstanz) and Sebastian Kranz (Ulm)

JEEA Teaching Material

Motivating Example: Repeated Principal Agent Game

• Each period: Agent A chooses effort $e \in [0, \overline{e}]$ or boycots principal

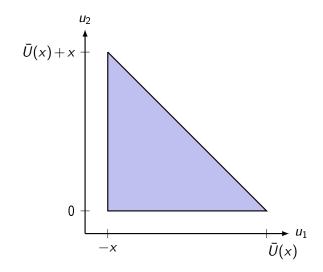
stage game payoffs	principal	agent
agent works	е	-k(e)
boycot	- <i>x</i>	0

- k(e) is smoothly increasing and convex with k(0) = 0, \bar{e} is efficient
- We call $x \ge 0$ principal's vulnerability
- At the beginning of each period players can voluntarily transfer money
 - risk neutral, unlimited liquidity
- ullet Infinitely often repeated, discount factor $\delta \in [0,1)$

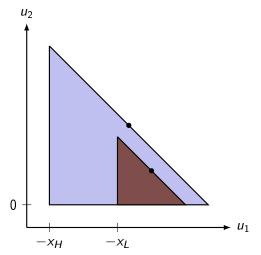
Relational Contracts

- Relational contract: A Pareto-optimal SPE of infinitely repeated game with transfers.
- Here, e.g.
 - Agent chooses maximal implementable effort e^* on equilibrium path
 - Principal pays agent a transfer next period only if e^* was chosen.
 - If principal deviates, agent boycots forever as punishment.
- ullet e^* increases in $oldsymbol{\delta}$ and principal's vulnerability x

Set of (average discounted) SPE Payoffs



SPE Payoffs for low and high vulnerability



blue: high vulnerability, red: low vulnerability

Endogenous Vulnerability

- Assume game begins in an initial state x₀ in which the principal chooses her vulnerability:
 - Forever low vulnerability x_L or forever high vulnerability x_H
 - no costs
- Stage game now depends on an endogenous state x: we have a discounted dynamic game (also called *stochastic game*).
- Question: Under which conditions will the principal make herself highly vulnerable?

Vulnerability Paradoxon of Pareto-Optimal SPE

If the first-best effort \bar{e} cannot be implemented with low vulnerability x_L then in **every** Pareto-Optimal SPE the principal makes herself highly vulnerable.

- Intuition: Higher vulnerability \rightarrow harsher punishment possible \rightarrow better incentives on equilibrium path.
- But what about hold-up? Should principal not worry about exploitation?
 - ▶ Hold-up is ruled out simply by assumption in Pareto-Optimal SPE.
- We belief more plausible is a trade-off between efficiency gain and risk of hold-up.
- Vulnerability Paradoxon is a key motiviation for our paper.

Main contributions

- Introduce "Repeated Negotiation Equilibrium" (RNE)
 - Relational contracts are newly negotiated from time to time
 - Refinement of SPE
 - Puts "hold-up" into relational contracts
- Many examples of dynamic games where Pareto-Optimal SPE are unintuitive but RNE model natural trade-offs.
 - Repeated games: RNE essentially just boil down to lower discount factor.

Related Literature

- Renegotiation-Proofness, e.g. Farell & Maskin (1989), Levin (2002), Goldlücke & Kranz (2013):
 - Key idea: Punishment should not be Pareto-dominated.
 - Has little bite in games with monetary transfers:
 - Allow punished player to settle punishment by paying a fine and continue afterwards as on equilibrium path
 - Every Pareto-optimal SPE payoff can be implemented with a renegotiation proof (strongly optimal) SPE.
- Miller & Watson (2013): Contract Equilibria
 - Does not solve Vulnerability Paradoxon either

A Simple Investment & Trade Game

Period 1:

Firms i = 1, 2 choose investment in common infrastructure $e_i \in [0, 1]$

- Period 2:
 - Firms can trade with each other. Surplus from trade

$$S(e)=\frac{3}{2}\cdot(e_1+e_2)$$

- Assume $\delta > rac{2}{3}$. Hence $e_1 = e_2 = 1$ is first best optimal
- Surplus S(e) is split via a Nash demand game: firms simultaneously announce demanded share $d_i \in [0, 1]$

$$\pi_i(e,d) = egin{cases} d_i S(e) & ext{if} \ d_1 + d_2 \leq 1 \ 0 & ext{otherwise} \end{cases}$$

• Note: This is a special case of a discounted dynamic game. Just fix payoff to 0 after period 2.

Simple Investment & Trade Game

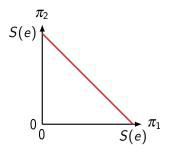
Stage game equilibria in period 2

• Every possible split of the full surplus S(e), e.g.

$$d = (0.1, 0.9)$$

is a stage game Nash equilibrium in period 2.

 Same result with many other formulations of bargaining game in period 2. Famous (but not robust) exception: Rubinstein bargaining.



Continuation payoffs in period 2

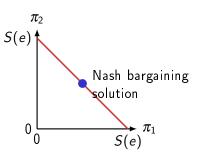
Simple Investment and Trade game

Hold-up Models:

 Behavioral assumption: In period 2, S(e) is always split according to Nash bargaining solution

$$\pi_i=\frac{1}{2}S(e)$$

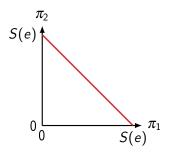
- A hold-up problem arises:
 - One extra unit of investment changes own payoff by $\delta \cdot \frac{1}{2} \cdot \frac{3}{2} 1 < 0$
 - No player invests (essentially a public goods dilemma)



Continuation payoffs in period 2

Relational Contracting: Pareto-optimal SPE

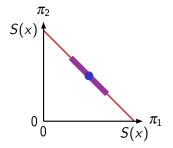
- Split of surplus will depend on investments:
 - Split surplus equally if both players invest 1.
 - If a player unilaterally invests less than 1, the other player gets whole surplus.
- Can always implement first-best investments.
- No hold-up problem!



Continuation payoffs in period 2

Hold-Up or Relational Contracting: What shall we assume?

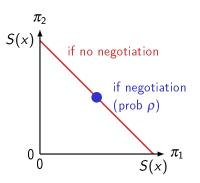
- Ellingsen and Johannesson (2004) study similar games in experiments
 - results suggest intermediate cases
- Our concept allows to model a continuum of intermediate cases



Continuation payoffs in period 2

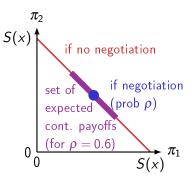
Our concept

- Exogenous probability $\rho \in [0,1]$ that relational contract is newly negotiated at beginning of each period
- Nash Bargaining:
 - expected payoffs = $\frac{1}{2}S(e)$
- If no new negotiation:
 - old relational contract stays in place and continuation play depends flexibly on history



Our concept: Repeated Negotiation Equilibria (RNE)

- Exogenous probability $\rho \in [0,1]$ that relational contract is newly negotiated at beginning of each period
- Nash Bargaining:
 - expected payoffs = $\frac{1}{2}S(e)$
- If no new negotiation:
 - old relational contract stays in place and continuation play depends flexibly on history



RNE for General Discounted Dynamic Games

- Repeated Negotiation Equilibria (RNE) is a refinement of SPE in discounted dynamic games with transfers and public correlation device
- Exogenous probability $ho \in [0,1]$ that continuation equilibria are newly negotiated at beginning of a period.
- Negotiation payoffs r(x) denote expected continuation payoffs if there is new negotiation in state x
 - Negotiation outcome only depends on state x, not on any other aspect of history

Nash Bargaining Solution and RNE

- Take future negotiaton payoffs r as given. Specify for each state x a "truncated" game Γ(x, r):
 - stops with probability ρ each period
 - if it stops in state x, it grants fixed payoffs of r(x) forever
- RNE: r(x) must split
 Pareto-optimal SPE payoff of truncated game given r according to Nash Bargaining solution, with worst equilibrium payoffs as disagreement point.

Set of SPE payoffs of truncated game U_2 starting in state x r(x) U_1

Limit Cases

- Limit cases:
 - $\rho = 1$: RNE is a Markov Perfect Equilibrium (if there is a unique MPE)
 - $\rho = 0$: RNE is a Pareto-optimal SPE

Repeated Games

- In a repeated game negotiation is like a termination and restart of relationship.
- Relevant is adjusted discount factor: $ilde{\delta} = (1\!-\!
 ho)\delta$
- RNE always exist and have unique negotiation payoff:

$$r_i = ilde{v}_i(ilde{\delta}) + eta_i(ilde{U}(ilde{\delta}) - \sum_{j=1}^n ilde{v}_j(ilde{\delta}))$$

where $\tilde{U}(\tilde{\delta})$ and $\tilde{v}_j(\tilde{\delta})$ are maximal joint payoff and minimal punishment payoff of repeated game with discount factor $\tilde{\delta}$.

 Reduced discount factor already accounts for hold up in repeated games.

Blackmailing Game: No RNE exists

- 2 players, 2 states, ho > 0
- Initial state x₀:
 - ▶ Payoffs (0,1).
 - Player 1 (blackmailer) can reveal harmful information about player 2 → moving permanently to state x₁
- State x₁:
 - Payoffs (0,0)
 - no more actions $\rightarrow r(x_1) = (0,0)$

Blackmailing Game: No RNE exists

- 2 players, 2 states, ho > 0
- Initial state x₀:
 - ▶ Payoffs (0,1).
 - Player 1 (blackmailer) can reveal harmful information about player 2 → moving permanently to state x₁
- State x₁:
 - Payoffs (0,0)
 - no more actions $\rightarrow r(x_1) = (0,0)$

- In the truncated game with $r_1(x_0) = 0$ blackmailer can extort money by credible threat to reveal information.
 - Nash bargaining solution would give blackmailer a negotiation payoff of r₁(x₀) = ¹/₂δ

Blackmailing Game: No RNE exists

- 2 players, 2 states, ho > 0
- Initial state x₀:
 - ▶ Payoffs (0,1).
 - Player 1 (blackmailer) can reveal harmful information about player 2 → moving permanently to state x₁
- State x₁:
 - Payoffs (0,0)
 - no more actions $\rightarrow r(x_1) = (0,0)$

- In the truncated game with $r_1(x_0) = 0$ blackmailer can extort money by credible threat to reveal information.
 - Nash bargaining solution would give blackmailer a negotiation payoff of r₁(x₀) = ¹/₂δ
- But if r₁(x₀) > 0, it is not anymore incentive compatible to reveal information. No money can then be extorted!

Weak RNE

Key idea:

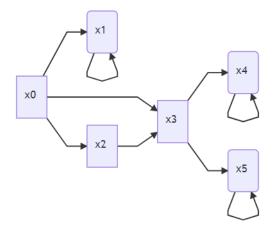
- In negotiations, player *i* randomly becomes dictator with probability β_i .
- Dictator must pick her best SPE payoff of truncated game Γ(x, r) but can ignore SPE payoffs that are not stable.
- Stability definition:
 - A SPE payoff u of a truncated game $\Gamma(x, r)$ is **stable** if there exists an ε -ball D^{ε} around r and a continuous function $f: D^{\varepsilon} \to \mathbb{R}^n$ such that f(r) = u and $f(\tilde{r})$ is a SPE payoff of $\Gamma(x, \tilde{r})$ for all $\tilde{r} \in D^{\varepsilon}$.
 - In a repeated game every SPE is stable.

Weak RNE

- General existence result for weak RNE in stochastic games with transfers and public correlation device.
- In repeated game: Unique weak RNE payoff equal to RNE payoff
- Note: General existence result for weak RNE has probably little relevance for applied work.
 - Characterization of mixed strategy weak RNE payoff set for general stochastic games can become quite complicated.

Strongly Directional Games

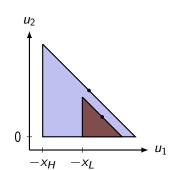
• Strongly directional game: finite number of states and only terminal states can be repeatedly visited. Example:

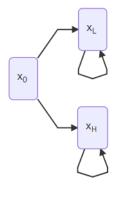


• RNE always exist. Unique RNE payoff. Fast numerical algorithm.

Back to the Vulnerability Paradoxon

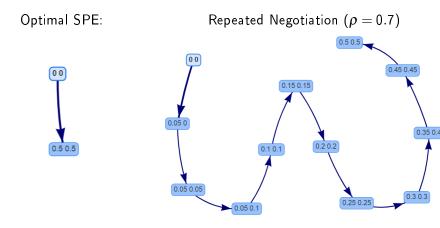
RNE for fixed $\rho > 0$ and limit $\delta \to 1$: Principal chooses vulnerability $x \in \{x_L, x_H\}$ that would grant her a higher negotiation payoff in the repeated game with discount factor $\tilde{\delta} = (1-\rho)\delta$ and fixed vulnerability x.





Variation of Vulnerability Paradox

- Variation of previous principal-agent example:
 - Both principal and agent can boycot.
 - ▶ Vulnerability of each player *i* can take 11 levels $x_i \in \{0, 0.05, 0.1, ..., 0.5\}$.
 - ► Each player starts with x_i = 0, but can increase vulnerability in each period to any higher level. Not possible to decrease.
- Assume that vulnerability can be changed only in the first T = 1000 periods.
 - ▶ We then have a strongly directional game where for $t \leq T$, a state is described by (t, x_1, x_2) .
- Solve numerically, with cost $k(e) = -\frac{1}{2}e^2$ and effort from grid $e \in \{0, 0.01, 0.02, ..., 1\}$, adjusted discount factor $\tilde{\delta} = 0.25$.



Both players make themselves immediately fully vulnerable.

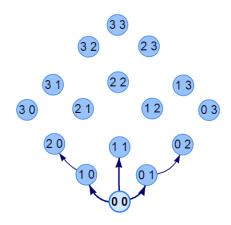
Gradual increase of mutual vulnerability.

Arms Race Example

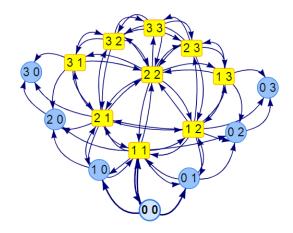
- Two countries that can perform costly investment into weapons
- State x = (x₁, x₂) where x_i = {0, 1, ..., x̄} denotes weapons arsenal of country i.
 - Country i can increase or decrease x_i by one unit. Investment costly, not always successful
 - Maintanance costs $c_m \cdot x_i$ every period
 - Country i can attack other country and inflict harm proportional to x_i. Attack is costly.
- No direct gain from using weapons, but possibly can extract transfers by threat to use them.
- Only one randomly chosen country can act in a period.

Arms Race Example

- In no Pareto-optimal SPE weapons are bought
 - Reason: It is an SPE that players never make transfers and simply ignore any threat to use weapons.
- In no MPE weapons are bought or used
 - Reason: Not credible to pay cost of attack, since it cannot induce future payments.
- In RNE weapons can be bought. Numerical example on next slide.



Transitions in an RNE



Variation of game: Attacks can destroy other player's weapons

Summary

Key point:

- Repeated Negotiation Equilibria (RNE) account for hold-up concerns and role of bargaining positions in relationships with long term decisions
 - Pareto-optimal equilibria and existing (re-)negotiation refinements often do not

Future research:

• Alternative disagreement point than worst continuation equilibrium.

Appendix: Critical Negotiation Probability

- Relational contracting literature often computes a critical minimal discount factor $\bar{\delta}$ that is required to implement first-best actions
- We propose critical maximal negotiation probability $\bar{
 ho}$ as an alternative
- Investment and Trade game:
 - First best investments $e_1 = e_2 = 1$ can be implemented if and only if

$$ho \leq$$
 2 $(1-rac{2}{3}\delta^{-1})\equivar
ho$

Problem of Critical Discount Factors

- \bullet Critical minimum discount factors $\bar{\delta}$ make less sense in discounted dynamic games
 - \blacktriangleright First best can change in δ
- Investment and Trade game:
 - ▶ In a SPE full effort $e_1 = e_2 = 1$ can only be implemented if $\delta \geq \frac{2}{3}$.
 - But if $\delta \leq \frac{2}{3}$, also the first-best effort changes to $e_1 = e_2 = 0$.
 - \blacktriangleright Hence for every discount factor δ the first best can be implemented in a SPE