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Motivating Example: Repeated Principal Agent Game

Each period: Agent A chooses e�ort e ∈ [0, ē] or boycots principal

stage game payo�s principal agent

agent works e -k(e)

boycot −x 0

k(e) is smoothly increasing and convex with k(0) = 0, ē is e�cient

We call x ≥ 0 principal's vulnerability

At the beginning of each period players can voluntarily transfer money
I risk neutral, unlimited liquidity

In�nitely often repeated, discount factor δ ∈ [0,1)
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Relational Contracts

Relational contract: A Pareto-optimal SPE of in�nitely repeated game

with transfers.

Here, e.g.
I Agent chooses maximal implementable e�ort e∗ on equilibrium path
I Principal pays agent a transfer next period only if e∗ was chosen.
I If principal deviates, agent boycots forever as punishment.

e∗ increases in δ and principal's vulnerability x
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Set of (average discounted) SPE Payo�s

−x Ū(x)

0
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SPE Payo�s for low and high vulnerability

−xH −xL
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blue: high vulnerability, red: low vulnerability
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Endogenous Vulnerability

Assume game begins in an initial state x0 in which the principal

chooses her vulnerability:
I Forever low vulnerability xL or forever high vulnerability xH
I no costs

Stage game now depends on an endogenous state x : we have a

discounted dynamic game (also called stochastic game).

Question: Under which conditions will the principal make herself

highly vulnerable?
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Vulnerability Paradoxon of Pareto-Optimal SPE

If the �rst-best e�ort ē cannot be implemented with low vulnerability xL
then in every Pareto-Optimal SPE the principal makes herself highly

vulnerable.

Intuition: Higher vulnerability → harsher punishment possible →
better incentives on equilibrium path.

But what about hold-up? Should principal not worry about

exploitation?
I Hold-up is ruled out simply by assumption in Pareto-Optimal SPE.

We belief more plausible is a trade-o� between e�ciency gain and risk

of hold-up.

Vulnerability Paradoxon is a key motiviation for our paper.
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Main contributions

Introduce �Repeated Negotiation Equilibrium� (RNE)
I Relational contracts are newly negotiated from time to time
I Re�nement of SPE
I Puts �hold-up� into relational contracts

Many examples of dynamic games where Pareto-Optimal SPE are

unintuitive but RNE model natural trade-o�s.
I Repeated games: RNE essentially just boil down to lower discount
factor.
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Related Literature

Renegotiation-Proofness, e.g. Farell & Maskin (1989), Levin (2002),

Goldlücke & Kranz (2013):
I Key idea: Punishment should not be Pareto-dominated.
I Has little bite in games with monetary transfers:

F Allow punished player to settle punishment by paying a �ne and
continue afterwards as on equilibrium path

F Every Pareto-optimal SPE payo� can be implemented with a
renegotiation proof (strongly optimal) SPE.

Miller & Watson (2013): Contract Equilibria
I Does not solve Vulnerability Paradoxon either
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A Simple Investment & Trade Game

Period 1:
I Firms i = 1,2 choose investment in common infrastructure ei ∈ [0,1]

Period 2:
I Firms can trade with each other. Surplus from trade

S(e) =
3

2
· (e1 + e2)

I Assume δ > 2

3
. Hence e1 = e2 = 1 is �rst best optimal

I Surplus S(e) is split via a Nash demand game: �rms simultaneously
announce demanded share di ∈ [0,1]

πi (e,d) =

{
diS(e) if d1 +d2 ≤ 1

0 otherwise

Note: This is a special case of a discounted dynamic game. Just �x

payo� to 0 after period 2.
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Simple Investment & Trade Game

Stage game equilibria in period 2

Every possible split of the full surplus

S(e), e.g.

d = (0.1,0.9)

is a stage game Nash equilibrium in

period 2.

Same result with many other

formulations of bargaining game in

period 2. Famous (but not robust)

exception: Rubinstein bargaining.

π2

π1

S(e)

S(e)0
0

Continuation payo�s in period 2
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Simple Investment and Trade game

Hold-up Models:

Behavioral assumption: In period 2,

S(e) is always split according to Nash

bargaining solution

πi =
1

2
S(e)

A hold-up problem arises:
I One extra unit of investment
changes own payo� by
δ · 1

2
· 3
2
−1< 0

I No player invests
(essentially a public goods
dilemma)

π2

π1

S(e)

S(e)

Nash bargaining

solution

0
0

Continuation payo�s in period 2
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The Investment and Trade game

Relational Contracting:
Pareto-optimal SPE

Split of surplus will depend on

investments:
I Split surplus equally if both players
invest 1.

I If a player unilaterally invests less
than 1, the other player gets whole
surplus.

Can always implement �rst-best

investments.

No hold-up problem!

π2

π1

S(e)

S(e)0
0

Continuation payo�s in period 2
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The Investment and Trade game

Hold-Up or Relational Contracting:
What shall we assume?

Ellingsen and Johannesson (2004)

study similar games in experiments
I results suggest intermediate cases

Our concept allows to model a

continuum of intermediate cases

S(x)

S(x)0
0

π2

π1

Continuation payo�s in period 2
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The Investment and Trade game

Our concept

Exogenous probability ρ ∈ [0,1] that
relational contract is newly negotiated

at beginning of each period

Nash Bargaining:
I expected payo�s = 1

2
S(e)

If no new negotiation:
I old relational contract stays in
place and continuation play
depends �exibly on history

S(x)

S(x)0
0

π2

π1

if negotiation

(prob ρ)

if no negotiation
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The Investment and Trade game

Our concept: Repeated Negotiation
Equilibria (RNE)

Exogenous probability ρ ∈ [0,1] that
relational contract is newly negotiated

at beginning of each period

Nash Bargaining:
I expected payo�s = 1

2
S(e)

If no new negotiation:
I old relational contract stays in
place and continuation play
depends �exibly on history

S(x)

S(x)0
0

π2

π1

if negotiation

(prob ρ)

if no negotiation

set of

expected

cont. payo�s

(for ρ = 0.6)
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RNE for General Discounted Dynamic Games

Repeated Negotiation Equilibria (RNE) is a re�nement of SPE in

discounted dynamic games with transfers and public correlation device

Exogenous probability ρ ∈ [0,1] that continuation equilibria are newly

negotiated at beginning of a period.

Negotiation payo�s r(x) denote expected continuation payo�s if there

is new negotiation in state x
I Negotiation outcome only depends on state x , not on any other aspect
of history
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Nash Bargaining Solution and RNE

Take future negotiaton payo�s r
as given. Specify for each state

x a �truncated� game Γ(x , r):
I stops with probability ρ each
period

I if it stops in state x , it grants
�xed payo�s of r(x) forever

RNE: r(x) must split

Pareto-optimal SPE payo� of

truncated game given r
according to Nash Bargaining

solution, with worst equilibrium

payo�s as disagreement point.

Set of SPE payo�s

of truncated game

starting in state x

r(x)

u2

u1
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Limit Cases

Limit cases:
I ρ = 1: RNE is a Markov Perfect Equilibrium (if there is a unique MPE)
I ρ = 0: RNE is a Pareto-optimal SPE
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Repeated Games

In a repeated game negotiation is like a termination and restart of

relationship.

Relevant is adjusted discount factor: δ̃ = (1−ρ)δ

RNE always exist and have unique negotiation payo�:

ri = ṽi (δ̃ ) + βi (Ũ(δ̃ )−
n

∑
j=1

ṽj(δ̃ ))

where Ũ(δ̃ ) and ṽj(δ̃ ) are maximal joint payo� and minimal

punishment payo� of repeated game with discount factor δ̃ .

Reduced discount factor already accounts for hold up in repeated

games.
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Blackmailing Game: No RNE exists

2 players, 2 states, ρ > 0

Initial state x0:
I Payo�s (0,1).
I Player 1 (blackmailer) can
reveal harmful information
about player 2 →
moving permanently to state
x1

State x1:
I Payo�s (0,0)
I no more actions →

r(x1) = (0,0)

In the truncated game with

r1(x0) = 0 blackmailer can

extort money by credible threat

to reveal information.
I Nash bargaining solution
would give blackmailer a
negotiation payo� of
r1(x0) = 1

2
δ

But if r1(x0) > 0, it is not

anymore incentive compatible to

reveal information. No money

can then be extorted!
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Weak RNE

Key idea:
I In negotiations, player i randomly becomes dictator with probability βi .
I Dictator must pick her best SPE payo� of truncated game Γ(x , r) but
can ignore SPE payo�s that are not stable.

Stability de�nition:
I A SPE payo� u of a truncated game Γ(x , r) is stable if there exists an

ε-ball Dε around r and a continuous function f : Dε → Rn such that
f (r) = u and f (r̃) is a SPE payo� of Γ(x , r̃) for all r̃ ∈ Dε .

I In a repeated game every SPE is stable.
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Weak RNE

General existence result for weak RNE in stochastic games with

transfers and public correlation device.

In repeated game: Unique weak RNE payo� equal to RNE payo�

Note: General existence result for weak RNE has probably little

relevance for applied work.
I Characterization of mixed strategy weak RNE payo� set for general
stochastic games can become quite complicated.
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Strongly Directional Games

Strongly directional game: �nite number of states and only terminal

states can be repeatedly visited. Example:

RNE always exist. Unique RNE payo�. Fast numerical algorithm.
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Back to the Vulnerability Paradoxon

RNE for �xed ρ > 0 and limit δ → 1:

Principal chooses vulnerability x ∈ {xL,xH}
that would grant her a higher negotiation

payo� in the repeated game with discount

factor δ̃ = (1−ρ)δ and �xed vulnerability x .

−xH −xL

0

u2

u1
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Variation of Vulnerability Paradox

Variation of previous principal-agent example:
I Both principal and agent can boycot.
I Vulnerability of each player i can take 11 levels

xi ∈ {0,0.05,0.1, ...,0.5}.
I Each player starts with xi = 0, but can increase vulnerability in each
period to any higher level. Not possible to decrease.

Assume that vulnerability can be changed only in the �rst T = 1000

periods.
I We then have a strongly directional game where for t ≤ T , a state is
described by (t,x1,x2).

Solve numerically, with cost k(e) =−1

2
e2 and e�ort from grid

e ∈ {0,0.01,0.02, ...,1}, adjusted discount factor δ̃ = 0.25.
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Optimal SPE: Repeated Negotiation (ρ = 0.7)

Both players make themselves Gradual increase of

immediately fully vulnerable. mutual vulnerability.
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Arms Race Example

Two countries that can perform costly investment into weapons

State x = (x1,x2) where xi = {0,1, ..., x̄} denotes weapons arsenal of
country i .

I Country i can increase or decrease xi by one unit. Investment costly,
not always successful

I Maintanance costs cm ·xi every period
I Country i can attack other country and in�ict harm proportional to xi .
Attack is costly.

No direct gain from using weapons, but possibly can extract transfers

by threat to use them.

Only one randomly chosen country can act in a period.
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Arms Race Example

In no Pareto-optimal SPE weapons are bought
I Reason: It is an SPE that players never make transfers and simply
ignore any threat to use weapons.

In no MPE weapons are bought or used
I Reason: Not credible to pay cost of attack, since it cannot induce
future payments.

In RNE weapons can be bought. Numerical example on next slide.
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Transitions in an RNE

30



Variation of game: Attacks can destroy other player's weapons
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Summary

Key point:

Repeated Negotiation Equilibria (RNE) account for hold-up concerns

and role of bargaining positions in relationships with long term

decisions
I Pareto-optimal equilibria and existing (re-)negotiation re�nements
often do not

Future research:

Alternative disagreement point than worst continuation equilibrium.
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Appendix: Critical Negotiation Probability

Relational contracting literature often computes a critical minimal
discount factor δ̄ that is required to implement �rst-best actions

We propose critical maximal negotiation probability ρ̄ as an

alternative

Investment and Trade game:
I First best investments e1 = e2 = 1 can be implemented if and only if

ρ ≤ 2(1− 2

3
δ
−1)≡ ρ̄
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Problem of Critical Discount Factors

Critical minimum discount factors δ̄ make less sense in discounted

dynamic games
I First best can change in δ

Investment and Trade game:
I In a SPE full e�ort e1 = e2 = 1 can only be implemented if δ ≥ 2

3
.

I But if δ ≤ 2

3
, also the �rst-best e�ort changes to e1 = e2 = 0.

I Hence for every discount factor δ the �rst best can be implemented in
a SPE
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