Endogenous Lemon Markets: Risky Choices and Adverse Selection

Avi Lichtig and Ran Weksler

Hebrew University of Jerusalem

• Akerlof (1970): a seller and a competitive market of buyers.

- Akerlof (1970): a seller and a competitive market of buyers.
- The seller has an asset of type x; private information.

- Akerlof (1970): a seller and a competitive market of buyers.
- The seller has an asset of type x; private information.
- The seller can
 - utilize the asset and obtain $v_s(x)$.
 - sell the asset and obtain *p*.

Equilibrium

Equilibrium

$$\mathbb{E}_{F}\left[v_{b}\left(x\right)|x\leq\hat{x}\right]=v_{s}\left(\hat{x}\right)=p.$$

Avi Lichtig and Ran Weksler (HUJI)

• Both are consistent with the model.

- Both are consistent with the model.
- Indeterminacy of adverse-selection severity.

• In Akerlof's (1970) model the distribution is exogenous.

- In Akerlof's (1970) model the distribution is exogenous.
- Consider the illiquidity in financial markets during the crisis of 2007–2008.

- In Akerlof's (1970) model the distribution is exogenous.
- Consider the illiquidity in financial markets during the crisis of 2007–2008.
- According to the literature, a result of adverse selection; e.g., Philippon and Skreta (2012) and Tirole (2012).

- In Akerlof's (1970) model the distribution is exogenous.
- Consider the illiquidity in financial markets during the crisis of 2007–2008.
- According to the literature, a result of adverse selection; e.g., Philippon and Skreta (2012) and Tirole (2012).
- Decisions of a banker affect the value of a traded MBS.

- In Akerlof's (1970) model the distribution is exogenous.
- Consider the illiquidity in financial markets during the crisis of 2007–2008.
- According to the literature, a result of adverse selection; e.g., Philippon and Skreta (2012) and Tirole (2012).
- Decisions of a banker affect the value of a traded MBS.
- What if the distribution of the traded asset is endogenous?

• We study an Akerlof (1970) model with a preliminary stage, in which, actions of the seller affect the distribution of the traded asset.

- We study an Akerlof (1970) model with a preliminary stage, in which, actions of the seller affect the distribution of the traded asset.
- We ask: is there a reason for us to expect a market failure?

- We study an Akerlof (1970) model with a preliminary stage, in which, actions of the seller affect the distribution of the traded asset.
- We ask: is there a reason for us to expect a market failure?
- If the actions of the seller are observed by the buyers, the seller behaves efficiently.

- We study an Akerlof (1970) model with a preliminary stage, in which, actions of the seller affect the distribution of the traded asset.
- We ask: is there a reason for us to expect a market failure?
- If the actions of the seller are observed by the buyers, the seller behaves efficiently.
- Each action defines a different "Akerlof Game", and in each, the seller pockets all social welfare.

- We study an Akerlof (1970) model with a preliminary stage, in which, actions of the seller affect the distribution of the traded asset.
- We ask: is there a reason for us to expect a market failure?
- If the actions of the seller are observed by the buyers, the seller behaves efficiently.
- Each action defines a different "Akerlof Game", and in each, the seller pockets all social welfare.
- If the actions are unobservable, e.g., a banker whose decisions are based on private information, then "lemon" markets are endogenous.

Intuition

• The seller's equilibrium payoff has an option value: he sells low realizations and consumes high ones.

Intuition

- The seller's equilibrium payoff has an option value: he sells low realizations and consumes high ones.
- Therefore, the seller's equilibrium behavior is characterized by a risk-seeking property.

Intuition

- The seller's equilibrium payoff has an option value: he sells low realizations and consumes high ones.
- Therefore, the seller's equilibrium behavior is characterized by a risk-seeking property.
- Under a natural condition (location independent risk), this behavior implies low trade and welfare in equilibrium.

An Additional Example

• An entrepreneur is setting a startup company.

An Additional Example

- An entrepreneur is setting a startup company.
- Private decisions: HR strategy, capital allocation, etc.

An Additional Example

- An entrepreneur is setting a startup company.
- Private decisions: HR strategy, capital allocation, etc.
- Those decisions affect the distribution of the company's value at the exit stage.

Related Literature

- Disclosure: Ben-Porath, Dekel and Lipman (2017), DeMarzo, Kremer and Skrzypacz (2019).
- Information structure in Akerlof's (1970) model: Doherty and Thistle (1996), Levin (2001).
- Insurance: Jewitt (1989), Landsberger and Meilijson (1994).
- The hold-up problem: Gul (2001), Hermalin and Katz (2009), Hermalin (2013), Dilmé (2019).

- First, the seller chooses a probability distribution $F \in \mathcal{F}$ (finite).
- The choice is unobservable.

- First, the seller chooses a probability distribution $F \in \mathcal{F}$ (finite).
- The choice is unobservable.
- Then, Nature chooses x according to F.

- First, the seller chooses a probability distribution $F \in \mathcal{F}$ (finite).
- The choice is unobservable.
- Then, Nature chooses x according to F.
- Finally, the seller steps into a trade game à la Akerlof (1970).

- First, the seller chooses a probability distribution $F \in \mathcal{F}$ (finite).
- The choice is unobservable.
- Then, Nature chooses x according to F.
- Finally, the seller steps into a trade game à la Akerlof (1970).
- In this presentation:

•
$$v_s(x) = x$$
.

•
$$v_b(x) = x + \Delta, \ \Delta > 0.$$

- First, the seller chooses a probability distribution $F \in \mathcal{F}$ (finite).
- The choice is unobservable.
- Then, Nature chooses x according to F.
- Finally, the seller steps into a trade game à la Akerlof (1970).
- In this presentation:
 - $v_s(x) = x$.
 - $v_b(x) = x + \Delta, \ \Delta > 0.$
- The market is competitive, i.e., $p = \mathbb{E}\left[x + \Delta | x \leq p
 ight]$

- First, the seller chooses a probability distribution $F \in \mathcal{F}$ (finite).
- The choice is unobservable.
- Then, Nature chooses x according to F.
- Finally, the seller steps into a trade game à la Akerlof (1970).
- In this presentation:
 - $v_s(x) = x$.
 - $v_b(x) = x + \Delta, \ \Delta > 0.$
- The market is competitive, i.e., p = E [x + Δ|x ≤ p] (taken according to market's beliefs w.r.t. the seller's strategy in the first stage.)

Example

• The seller chooses between two projects

$$X_1 = 1 \text{ w.p. } 1, \ X_2 = \begin{cases} 0 & \text{w.p. } \frac{3}{5} \\ 2 & \text{w.p. } \frac{2}{5} \end{cases}$$

• The seller chooses between two projects

$$X_1 = 1 \text{ w.p. } 1, \ X_2 = \begin{cases} 0 & \text{w.p. } \frac{3}{5} \\ 2 & \text{w.p. } \frac{2}{5} \end{cases}$$

•
$$\Delta = \frac{1}{2}$$
.
• $p_1 = \frac{3}{2}$; probability of trade = 1.

Example

• The seller chooses between two projects

$$X_1 = 1$$
 w.p. 1, $X_2 = \begin{cases} 0 & \text{w.p. } \frac{3}{5} \\ 2 & \text{w.p. } \frac{2}{5} \end{cases}$

•
$$\Delta = \frac{1}{2}$$
.
• $p_1 = \frac{3}{2}$; probability of trade = 1.
• $p_2 = \frac{1}{2}$; probability of trade = $\frac{2}{5}$.

The seller chooses between two projects

$$X_1 = 1 \text{ w.p. } 1, \ X_2 = \begin{cases} 0 & \text{w.p. } \frac{3}{5} \\ 2 & \text{w.p. } \frac{2}{5} \end{cases}$$

• $\Delta = \frac{1}{2}$.

•
$$p_1 = \frac{3}{2}$$
; probability of trade = 1.

- $p_2 = \frac{1}{2}$; probability of trade $= \frac{2}{5}$.
- Claim: in the unique equilibrium of the extended trade game, the seller chooses X_2 and only "lemons" are traded.

Example (cont.)

• Assume that the seller is choosing X_1 in equilibrium.

Example (cont.)

- Assume that the seller is choosing X_1 in equilibrium.
- The seller's profit is

$$p_1 = \frac{3}{2} < 2.$$

Example (cont.)

- Assume that the seller is choosing X_1 in equilibrium.
- The seller's profit is

$$p_1 = \frac{3}{2} < 2.$$

• The seller can deviate to X_2 and then sell the asset only if a "lemon" is realized

$$\frac{3}{5}\cdot p_1+\frac{2}{5}\cdot 2>p_1.$$

Example (cont.)

- Assume that the seller is choosing X_1 in equilibrium.
- The seller's profit is

$$p_1 = \frac{3}{2} < 2.$$

• The seller can deviate to X_2 and then sell the asset only if a "lemon" is realized

$$\frac{3}{5}\cdot p_1+\frac{2}{5}\cdot 2>p_1.$$

The same argument holds in any mixed equilibrium.

• First, a concise analysis of a trade game in which $x \sim F$.

• First, a concise analysis of a trade game in which $x \sim F$.

Assumptions

- x ≥ 0.
- positive density over \mathbb{R}_+ : $f(x) > 0 \ \forall x \ge 0$.
- F is log-concave.

• First, a concise analysis of a trade game in which $x \sim F$.

Assumptions

- x ≥ 0.
- positive density over \mathbb{R}_+ : $f(x) > 0 \ \forall x \ge 0$.
- F is log-concave.
- log-concavity \Longrightarrow unique equilibrium

• First, a concise analysis of a trade game in which $x \sim F$.

Assumptions

- x ≥ 0.
- positive density over \mathbb{R}_+ : $f(x) > 0 \ \forall x \ge 0$.
- F is log-concave.
- log-concavity \Longrightarrow unique equilibrium
- ullet unboundedness \Longrightarrow equilibrium in the interior

Welfare in Equilibrium

• Denote the unique equilibrium price by $\hat{p}_F > 0$:

$$\mathbb{E}_{\mathsf{F}}\left[x + \Delta | x \leq \hat{\rho}_{\mathsf{F}}\right] = \hat{\rho}_{\mathsf{F}}$$

.

Welfare in Equilibrium

• Denote the unique equilibrium price by $\hat{p}_F > 0$:

$$\mathbb{E}_{\mathsf{F}}\left[x + \Delta | x \leq \hat{p}_{\mathsf{F}}\right] = \hat{p}_{\mathsf{F}}$$

• For every $F \in \mathcal{F}$, let

Definition

.

•
$$PT(F) := F(\hat{p}_F)$$

•
$$SW(F) := \int_{0}^{\hat{p}_{F}} v_{b}(x) f(x) dx + \int_{\hat{p}_{F}}^{\infty} v_{s}(x) f(x) dx$$

Second-order Stochastic Dominance

Definition

Let $\textit{F}_1,\textit{F}_2 \in \mathcal{F}.$ \textit{F}_1 dominates \textit{F}_2 in the sense of second-order stochastic dominance if

$$\int_{0}^{t} F_{1}(x) dx \leq \int_{0}^{t} F_{2}(x) dx,$$

for every $t \ge 0$.

Strong Second-order Stochastic Dominance

Definition

Let $F_1, F_2 \in \mathcal{F}$. F_1 dominates F_2 in the sense of strong second-order stochastic dominance if

$$\int_{0}^{t} F_{1}(x) dx < \int_{0}^{t} F_{2}(x) dx,$$

for every t > 0.

Excessive Risk

• Denote the seller's strategy at the first stage by $\alpha \in \Delta(\mathcal{F})$.

Excessive Risk

• Denote the seller's strategy at the first stage by $\alpha \in \Delta(\mathcal{F})$.

Theorem 1 Let $F_1, F_2 \in \mathcal{F}$ be two distributions such that • $\mathbb{E}_{F_1}[x] = \mathbb{E}_{F_2}[x]$, and • $F_1 \succ_{SSOSD} F_2$. Then, in any equilibrium of the extended trade game, $\alpha_1 = 0$.

• The seller's equilibrium payoff, $U_s(x)$, is convex.

• The seller's equilibrium payoff, $U_s(x)$, is convex.

 \bullet SOSD + equal expectation implies

•
$$X_2 \stackrel{d}{=} X_1 + \epsilon$$
, where $\mathbb{E}[\epsilon | X_1 = x] = 0 \ \forall x$.

Intuition

• SOSD + equal expectation implies

•
$$X_2 \stackrel{d}{=} X_1 + \epsilon$$
, where $\mathbb{E}[\epsilon | X_1 = x] = 0 \ \forall x$.

Intuition

• SOSD + equal expectation implies

•
$$X_2 \stackrel{d}{=} X_1 + \epsilon$$
, where $\mathbb{E}[\epsilon | X_1 = x] = 0 \ \forall x$.

• SSOSD: such realizations exist.

• Which distribution induces more trade?

- Which distribution induces more trade?
- $F_1 = U[50, 150]$ or $F_2 = U[0, 200]$

- Which distribution induces more trade?
- $F_1 = U[50, 150]$ or $F_2 = U[0, 200]$
- Note $X_2 \stackrel{d}{=} 2X_1 100$

- Which distribution induces more trade?
- $F_1 = U$ [50, 150] or $F_2 = U$ [0, 200]
- Note $X_2 \stackrel{d}{=} 2X_1 100$
- In uniform distributions, the link between risk and trade is immediate.

• Equilibrium of the F_1 trade game:

$$\mathbb{E}_{F_1}\left[x + \Delta | x \leq \hat{x}_1\right] = \hat{x}_1$$

• Equilibrium of the F_1 trade game:

$$\mathbb{E}_{F_1}\left[x + \Delta | x \leq \hat{x}_1\right] = \hat{x}_1$$

• Equilibrium of the F_2 trade game:

$$\mathbb{E}_{F_1}\left[2x - 100 + \Delta | x \leq \tilde{x}_2\right] = 2\tilde{x}_2 - 100$$

• Equilibrium of the F_1 trade game:

$$\mathbb{E}_{F_1}\left[x + \Delta | x \leq \hat{x}_1\right] = \hat{x}_1$$

• Equilibrium of the F_2 trade game:

$$\mathbb{E}_{F_1}\left[2x - 100 + \Delta | x \leq \tilde{x}_2\right] = 2\tilde{x}_2 - 100$$

• That is,

$$\mathbb{E}_{F_1}\left[x + \frac{\Delta}{2} | x \leq \tilde{x}_2\right] = \tilde{x}_2$$

• Equilibrium of the F_1 trade game:

 $\mathbb{E}_{F_1}\left[x + \Delta | x \leq \hat{x}_1\right] = \hat{x}_1$

• Equilibrium of the F_2 trade game:

$$\mathbb{E}_{F_1}\left[x+\frac{\Delta}{2}|x\leq \tilde{x}_2\right]=\tilde{x}_2$$

Intuition (cont.)

Normal Distributions

• The same argument applies in normal distributions.

Normal Distributions

- The same argument applies in normal distributions.
- Let $X_1 \sim N(\mu, \sigma_1^2)$, $X_2 \sim N(\mu, \sigma_2^2)$, $\sigma_2 > \sigma_1$.

Normal Distributions

- The same argument applies in normal distributions.
- Let $X_1 \sim N(\mu, \sigma_1^2)$, $X_2 \sim N(\mu, \sigma_2^2)$, $\sigma_2 > \sigma_1$.
- Note that $X_2 \stackrel{d}{=} \frac{\sigma_2}{\sigma_1} X_1 \frac{\sigma_2 \sigma_1}{\sigma_1} \mu$

A Note on Insurance

• A necessary and sufficient condition for a monotone link between risk and trade.
- A necessary and sufficient condition for a monotone link between risk and trade.
- Beforehand, on its origins in the context of insurance.

- A necessary and sufficient condition for a monotone link between risk and trade.
- Beforehand, on its origins in the context of insurance.
- Let $X_1 \sim F_1$, $X_2 \sim F_2$, and $F_1 \succ_{SOSD} F_2$.

- A necessary and sufficient condition for a monotone link between risk and trade.
- Beforehand, on its origins in the context of insurance.
- Let $X_1 \sim F_1$, $X_2 \sim F_2$, and $F_1 \succ_{SOSD} F_2$.
- Let DM_1 , DM_2 , be two risk-averse agents; DM_1 is less risk averse than DM_2 .

- A necessary and sufficient condition for a monotone link between risk and trade.
- Beforehand, on its origins in the context of insurance.
- Let $X_1 \sim F_1$, $X_2 \sim F_2$, and $F_1 \succ_{SOSD} F_2$.
- Let DM_1 , DM_2 , be two risk-averse agents; DM_1 is less risk averse than DM_2 .
- Assume that both agents are faced with X₂ and can pay a price π, in which case they will be faced with X₁.

- A necessary and sufficient condition for a monotone link between risk and trade.
- Beforehand, on its origins in the context of insurance.
- Let $X_1 \sim F_1$, $X_2 \sim F_2$, and $F_1 \succ_{SOSD} F_2$.
- Let DM_1 , DM_2 , be two risk-averse agents; DM_1 is less risk averse than DM_2 .
- Assume that both agents are faced with X₂ and can pay a price π, in which case they will be faced with X₁.
- Is it possible that DM₁ is willing to pay π in order to switch, while DM₂ is not?

Location Independent Risk

Definition

Let $F_1 \succ_{SOSD} F_2$. F_1 is location independent less risky than F_2 if

 $\mathbb{E}\left[u_1\left(\mathsf{X}_1-\pi\right)\right] = \mathbb{E}\left[u_1\left(\mathsf{X}_2\right)\right] \Longrightarrow \mathbb{E}\left[u_2\left(\mathsf{X}_1-\pi\right)\right] \ge \mathbb{E}\left[u_2\left(\mathsf{X}_2\right)\right],$

for every concave u_1 and u_2 such that u_2 is a non-decreasing concave transformation of u_1 .

Location Independent Risk

Definition

Let $F_1 \succ_{SOSD} F_2$. F_1 is location independent less risky than F_2 if

 $\mathbb{E}\left[u_1\left(X_1-\pi\right)\right] = \mathbb{E}\left[u_1\left(X_2\right)\right] \Longrightarrow \mathbb{E}\left[u_2\left(X_1-\pi\right)\right] \ge \mathbb{E}\left[u_2\left(X_2\right)\right],$

for every concave u_1 and u_2 such that u_2 is a non-decreasing concave transformation of u_1 .

Jewitt (1989)

 F_1 is location independent less risky than F_2 if and only if

$$\int_{0}^{F_{1}^{-1}(q)} F_{1}(x) dx < \int_{0}^{F_{2}^{-1}(q)} F_{2}(x) dx$$

for every $q \in (0, 1)$.

Second-order Stochastic Dominance

Second-order Stochastic Dominance

Second-order Stochastic Dominance

Location Independent Risk

Trade in Equilibrium

Theorem 2

Let $F_1, F_2 \in \mathcal{F}$ be two distribution such that

- $\mathbb{E}_{F_1}[x] = \mathbb{E}_{F_2}[x]$, and
- $F_1 \succ_{SOSD} F_2$.

Then $PT(F_1) > PT(F_2)$ for every $\Delta > 0$ if and only if $F_1 \succ_{LIR} F_2$.

Trade in Equilibrium

Theorem 2

Let $\textit{F}_1,\textit{F}_2 \in \mathcal{F}$ be two distribution such that

- $\mathbb{E}_{F_1}[x] = \mathbb{E}_{F_2}[x]$, and
- $F_1 \succ_{SOSD} F_2$.

Then $PT(F_1) > PT(F_2)$ for every $\Delta > 0$ if and only if $F_1 \succ_{LIR} F_2$.

 When extending the model to an increasing gains from trade environment F₁ ≻_{LIR} F₂ ⇒ SW (F₁) > SW (F₂).

• Let:

.

$D_{F}\left(q ight):=\mathbb{E}_{F}\left[x+\Delta|x\leq F^{-1}\left(q ight) ight]-F^{-1}\left(q ight)$

• Let:

.

$$D_{F}\left(q
ight):=\mathbb{E}_{F}\left[x+\Delta|x\leq F^{-1}\left(q
ight)
ight]-F^{-1}\left(q
ight)$$

• Equilibrium: $D_F(q) = 0$.

• Let:

.

٠

$$D_{F}(q) := \mathbb{E}_{F}\left[x + \Delta | x \leq F^{-1}(q)
ight] - F^{-1}(q)$$

• Equilibrium:
$$D_F(q) = 0$$
.

Note that

$$D_{F}(q) = \Delta - \frac{\int_{0}^{F^{-1}(q)} F(x) dx}{q}$$

• Let:

.

.

$$D_{F}\left(q
ight):=\mathbb{E}_{F}\left[x+\Delta|x\leq F^{-1}\left(q
ight)
ight]-F^{-1}\left(q
ight)$$

• Equilibrium:
$$D_F(q) = 0$$
.

Note that

$$D_{F}(q) = \Delta - \frac{\int_{0}^{F^{-1}(q)} F(x) dx}{q}$$

• Log-concavity implies monotonicity of D_F.

Let:

.

.

$$D_{F}\left(q
ight):=\mathbb{E}_{F}\left[x+\Delta|x\leq F^{-1}\left(q
ight)
ight]-F^{-1}\left(q
ight)$$

• Equilibrium:
$$D_F(q) = 0$$
.

Note that

$$D_{F}(q) = \Delta - \frac{\int_{0}^{F^{-1}(q)} F(x) dx}{q}$$

- Log-concavity implies monotonicity of D_F.
- We show that $D_{F_2}(q) = 0 \Rightarrow D_{F_1}(q) > 0$ if and only if $F_1 \succ_{LIR} F_2$.

• In the baseline model, the buyer cannot use public information in order to settle uncertainty.

- In the baseline model, the buyer cannot use public information in order to settle uncertainty.
- Akerlof (1970) can easily accommodates such an extension.

- In the baseline model, the buyer cannot use public information in order to settle uncertainty.
- Akerlof (1970) can easily accommodates such an extension.
- *F* = Description of the uncertainty unresolved by all public information.

- In the baseline model, the buyer cannot use public information in order to settle uncertainty.
- Akerlof (1970) can easily accommodates such an extension.
- *F* = Description of the uncertainty unresolved by all public information.
- In our model, this simple reduction is not appropriate.

- In the baseline model, the buyer cannot use public information in order to settle uncertainty.
- Akerlof (1970) can easily accommodates such an extension.
- *F* = Description of the uncertainty unresolved by all public information.
- In our model, this simple reduction is not appropriate.
- The joint distribution of the signal and the asset value depends on the seller's initial choice.

• The seller chooses between normally distributed random variables.

- The seller chooses between normally distributed random variables.
- Before trade is taking place, a signal $s = x + \epsilon$ is publicly observed.

- The seller chooses between normally distributed random variables.
- Before trade is taking place, a signal $s = x + \epsilon$ is publicly observed.
- $\epsilon \sim N(0, \sigma_{\epsilon}^2)$. Independent of x and the seller's choice.

Excessive Risk

Theorem 3

Let $F_1 = N(\mu, \sigma_1^2)$, and $F_2 = N(\mu, \sigma_2^2)$, where $\sigma_2^2 > \sigma_1^2$. For every $\sigma_{\epsilon}^2 > 0$, in any equilibrium of the extended trade game with the signal *S*, $\alpha_1 = 0$

Excessive Risk

Theorem 3

Let $F_1 = N(\mu, \sigma_1^2)$, and $F_2 = N(\mu, \sigma_2^2)$, where $\sigma_2^2 > \sigma_1^2$. For every $\sigma_{\epsilon}^2 > 0$, in any equilibrium of the extended trade game with the signal *S*, $\alpha_1 = 0$

• Theorem 2 implies that the probability of trade is lower if the seller is choosing F_2 .

• We study the case where the market power is in the buyer's hands.

• We study the case where the market power is in the buyer's hands.

Monotone increasing in risk (Landsberger and Meilijson (1994)) $F_1 \succ_{MIR} F_2$ if F_2 is more dispersed than F_1 (the horizontal distance $F_1^{-1}(q) - F_2^{-1}(q)$ is a non-decreasing function) and $\mathbb{E}_{F_1}[x] = \mathbb{E}_{F_2}[x]$.

• We study the case where the market power is in the buyer's hands.

Monotone increasing in risk (Landsberger and Meilijson (1994)) $F_1 \succ_{MIR} F_2$ if F_2 is more dispersed than F_1 (the horizontal distance $F_1^{-1}(q) - F_2^{-1}(q)$ is a non-decreasing function) and $\mathbb{E}_{F_1}[x] = \mathbb{E}_{F_2}[x]$.

Let *PT*(*F*) := the probability of trade in the *F* trade game with a monopolistic buyer.

• We study the case where the market power is in the buyer's hands.

Monotone increasing in risk (Landsberger and Meilijson (1994)) $F_1 \succ_{MIR} F_2$ if F_2 is more dispersed than F_1 (the horizontal distance $F_1^{-1}(q) - F_2^{-1}(q)$ is a non-decreasing function) and $\mathbb{E}_{F_1}[x] = \mathbb{E}_{F_2}[x]$.

Let *PT*(*F*) := the probability of trade in the *F* trade game with a monopolistic buyer.

Proposition

Let $F_1, F_2 \in \mathcal{F}$ be two distribution such that $F_1 \succ_{SOSD} F_2$. $\widetilde{PT}(F_1) > \widetilde{PT}(F_2)$ for every $\Delta > 0$ if and only if $F_1 \succ_{MIR} F_2$.

General Utility Functions

• First, one can view the structural assumption $v_s(x) = x$ as a normalization.

General Utility Functions

- First, one can view the structural assumption $v_s(x) = x$ as a normalization.
- F describes the distribution of the seller's value.

General Utility Functions

- First, one can view the structural assumption $v_s(x) = x$ as a normalization.
- F describes the distribution of the seller's value.
- Assuming increasing gains from trade and a (weakly) concave $v_b(x)$, Theorem 1 and 2 carry through.
General Utility Functions

- First, one can view the structural assumption $v_s(x) = x$ as a normalization.
- F describes the distribution of the seller's value.
- Assuming increasing gains from trade and a (weakly) concave $v_b(x)$, Theorem 1 and 2 carry through.
- If we reverse those assumptions the results are not reversed.

• In Akerlof's (1970) model, if the seller's hidden actions affect the distribution of the asset, "lemon" markets are endogenous.

- In Akerlof's (1970) model, if the seller's hidden actions affect the distribution of the asset, "lemon" markets are endogenous.
- Due to the option value of his equilibrium payoff, the seller is risk seeking.

- In Akerlof's (1970) model, if the seller's hidden actions affect the distribution of the asset, "lemon" markets are endogenous.
- Due to the option value of his equilibrium payoff, the seller is risk seeking.
- Location independent riskier distributions result in lower trade and social welfare in equilibrium.

- In Akerlof's (1970) model, if the seller's hidden actions affect the distribution of the asset, "lemon" markets are endogenous.
- Due to the option value of his equilibrium payoff, the seller is risk seeking.
- Location independent riskier distributions result in lower trade and social welfare in equilibrium.
- The result is robust to various changes in the structural assumptions of the model.

Extensions

The End

Thank You!

Avi Lichtig and Ran Weksler (HUJI)