Risk Perception: Measurement and Aggregation

Nick Netzer, Arthur Robson, Jakub Steiner, Pavel Kocourek

JEEA Teaching Materials

physical instruments often use nonlinear measurement scales

- this improves precision at some range of inputs
- at the expense of precision at other values

psychophysics literature extends this to human perception

• Kahneman & Tversky '79 use this to justify S-shaped utility

pick one of the two draws:

pick one of the two draws:

encode reward r_i as $m(r_i) + \varepsilon_i$

```
choose your encoding function m
```

optimal encoding function as noise vanishes

Our Contribution

Robson '01, Netzer '09:

- perception of one-dimensional inputs
- ullet encoding function \sim hedonic as opposed to Bernoulli utility
- vanishing implications for choice

this paper:

- exogenous perception \Rightarrow behavior
 - coarse model \Rightarrow perception-driven risk attitudes
 - well-specified model \Rightarrow risk-neutrality
- optimal perception of lotteries
 - microfounded objective
 - s-shaped encoding function
 - over-sampling of low-probability states

psychophysics: Weber's law, Fechner 1860, Thurstone '27...

encoding of stimuli: Attneave '54, Barlow et al. '61, Laughlin '81...

econ [riskless]: Robson '01, Netzer '09, Rayo&Becker '07...

econ [risky, large noise]: Friedman '89, Khaw&Li&Woodford '20, Frydman&Jin '19...

misspecification: Berk '66, White '82, Esponda Pouzo '16, Heidhues et al. '18...

Table of Contents

Prom Perception to Choice

Decision Problem

risk-neutrality: lottery optimal $\Leftrightarrow r := \sum_i p_i r_i > s$

set of states and probabilities fixed, and DM observes s frictionlessly

the DM:

- measures each reward many times
- estimates the lottery value given the collected data
- controls the encoding function and sampling frequencies

Perception

perception strategy:

- encoding function $m: [\underline{r}, \overline{r}] \longrightarrow [\underline{m}, \overline{m}]$; exogenous span
- sampling frequencies $(\pi_i)_i \in \Delta$ (set of states)

DM samples signals (i_k, \hat{m}_k) , $k = 1, \ldots, n$:

- i_k specifies the state; sampling frequencies $\pi_i \neq p_i$
- $\hat{m}_k = m(r_{i_k}) + \varepsilon_k$; iid standard normal noise

DM is sophisticated: knows conditional signal distributions

decoding: a map from perception data to the estimate of the lottery

nearly complete information: $n \to \infty$

a posteriori optimal choice

2 From Perception to Choice

fix perception strategy $m(\cdot)$ and $(\pi_i)_i$

def simple decoding: DM's estimate of lottery value = $m^{-1}(\sum_{k=1}^{n} \hat{m}_k)$

Observation

The probability that the DM chooses the lottery in problem (\mathbf{r}, \mathbf{s}) converges a.s. to 1 (0) as $n \to \infty$ if

$$\sum_i \pi_i m(r_i) > (<) m(s).$$

EU maximizer with Bernoulli utility $m(\cdot)$ and subjective probabilities π_i

two treatments:

genuine lottery (p_i, r_i)_i vs safe option
certainty equivalent of (p_i, r_i)_i vs safe option

nearly identical choices across the treatments

aggregation friction rather than risk aversion

our simple procedure fits Oprea's subjects

Maximum Likelihood Estimate

the DM is endowed with a compact set $\mathcal{A} \subseteq [\underline{r}, \overline{r}]^{I}$ of anticipated lotteries

forms ML estimate of the lottery

$$\mathbf{q}_{n} \in \operatorname*{arg\,max}_{\mathbf{r}' \in \mathcal{A}} \prod_{k=1}^{n} \varphi\left(\hat{m}_{k} - m\left(r_{i_{k}}'\right)\right)$$

Proposition

Suppose that the DM anticipates that the lottery involves no risk:

$$\mathcal{A} = \left\{ \mathbf{r} \in [\underline{r}, \overline{r}]^{I} : r_{i} = r_{j} \text{ for all states } i, j \right\}.$$

Then, she follows the simple decoding procedure.

White '82: asymptotic MLE minimizes KL-divergence from the true data-generating process, among all anticipated processes

$$\mathsf{MLE} \xrightarrow{\mathsf{a.s.}} \argmin_{r' \in \mathcal{A}} D_{\mathsf{KL}}(f_{\mathsf{r}} \parallel f_{\mathsf{r}'})$$

with Gaussian errors & no anticipated risk

$$D_{KL}(f_{\mathbf{r}} \parallel f_{\mathbf{r}'}) = \sum_{i=1}^{l} \pi_i (m(r_i) - m(r'_i))^2$$

hence MLE of $m(r) \rightarrow \sum_{i=1}^{l} \pi_i m(r_i)$

White '82: asymptotic MLE minimizes KL-divergence from the true data-generating process, among all anticipated processes

$$\mathsf{MLE} \xrightarrow{\mathsf{a.s.}} \argmin_{r' \in \mathcal{A}} D_{\mathsf{KL}}(f_{\mathsf{r}} \parallel f_{\mathsf{r}'})$$

With Gaussian errors & no anticipated risk

$$D_{KL}(f_{\mathbf{r}} \parallel f_{\mathbf{r}'}) = \sum_{i=1}^{l} \pi_i (m(r_i) - m(r'))^2$$

hence MLE of $m(r) \rightarrow \sum_{i=1}^{l} \pi_i m(r_i)$

Coarse Anticipation of Risk

DM anticipates lotteries to be measurable w.r.t. a partition of arms ${\cal K}$

Proposition

Prob that DM chooses the lottery in problem (\mathbf{r}, \mathbf{s}) converges to 1 [0] if

 $\sum_{J\in\mathcal{K}}p_Jr_J^*>[<]s,$

where, for each $J \in \mathcal{K}$,

• r_J^* is the certainty equivalent $m(r_J^*) = \sum_{i \in J} \frac{\pi_i}{\sum_{i \in J} \pi_i} m(r_i)$

• $p_J = \sum_{i \in J} p_i$ is the true probability of J

- anticipated risk: risk neutrality
- unanticipated risk: risk attitudes

let's bridge the gap between anticipated and unanticipated lotteries

joint limit of

- number of signals
- precision of prior density of Bayesian DM

effects of

- time pressure
- level of anticipated risk

prior $\propto \exp\left(-\frac{n}{\Delta}\sigma^2(\mathbf{r})\right)$ on $[\underline{r},\overline{r}]^I$, where $\sigma^2(\mathbf{r}) = \sum_i p_i(r_i - r)^2$

DM samples $a \times n$ perturbed messages

- Δ degree of the a priori anticipated risk
- a attention span, sample size increases with a
- as n grows
 - sample size grows
 - risk becomes a priori unlikely

The Bayesian estimate of lottery r converges to

$$\mathbf{q}^{*}(\mathbf{r}) = \operatorname*{arg\,min}_{\mathbf{r}' \in [\underline{r},\overline{r}]'} \left\{ \frac{1}{a\Delta} \sigma^{2}(\mathbf{r}') + \sum_{i} \pi_{i} \left(m\left(r_{i}\right) - m\left(r_{i}'\right) \right)^{2} \right\}.$$

limiting cases

- $a\Delta$ large: close to risk-neutrality
- $a\Delta$ small: close to the simple procedure

unstable risk attitudes

- $a \rightarrow 0$ vs. $a \rightarrow \infty$: Kahneman's thinking fast/slow
- $\Delta \rightarrow 0$ vs. $\Delta \rightarrow \infty$: Rabin's paradox

Consider a lottery with small risk σ^2 . The Bayesian estimate of the lottery value converges a.s. to

$$r+\frac{1}{2}\frac{m''(r)}{m'(r)}\cdot\sigma^2\cdot\frac{1+4a\Delta m'^2(r)}{[1+a\Delta m'^2(r)]^2}+o(\sigma^2).$$

- $a\Delta \rightarrow 0$: the usual Arrow-Pratt measure for $u(\cdot) = m(\cdot)$
- $a\Delta \rightarrow \infty$: risk-neutrality

Table of Contents

Prom Perception to Choice

Objective

ex ante distribution of the decision problems (\mathbf{r}, \mathbf{s})

- all r_i iid from continuously differentiable density h
- s independently from continuously differentiable density h_s

ex ante minimization of

$$L(n) = \mathsf{E}\left[\max\left\{r, s\right\} - \mathbb{1}_{q_n > s}r - \mathbb{1}_{q_n \le s}s\right]$$

• equivalent to maximization of the expected chosen reward

loss becomes tractable as n diverges

If the encoding function m is continuously differentiable, then

$$L(n) = \text{const. } \mathsf{E}\left[\sum_{i} \frac{p_i^2}{\pi_i m'^2(r_i)} \mid r = s\right] \frac{1}{n} + O\left(\frac{1}{n^2}\right).$$

If the encoding function m is continuously differentiable, then

 $L(n) \propto E$ [MSE conditional on tie].

choice is distorted if s falls between r and value estimate q_n

condition on ties: small perception error distorts choice only if $r \approx s$

 $\rm loss \propto MSE$

If the encoding function m is continuously differentiable, then

$$L(n) \propto \mathsf{E}\left[\sum_{i} p_i^2 \mathsf{MSE}(r_i) \text{ conditional on tie}\right]$$

MSE is a weighted sum of MSEs for each r_i

If the encoding function m is continuously differentiable, then

$$L(n) \propto \mathsf{E}\left[\sum_{i} p_i^2 \mathsf{MSE}(r_i) \text{ conditional on tie}\right]$$

 $MSE(r_i)$ is mitigated by high π_i and $m'(r_i)$

Information-Processing Problem

$$\min_{\substack{m'(\cdot),(\pi_i)_i>0}} \mathsf{E}\left[\sum_{i} \frac{p_i^2}{\pi_i m'^2(r_i)} \mid r=s\right]$$

s.t.: $\int_{\underline{r}}^{\overline{r}} m'(r) dr \leq \overline{m} - \underline{m}$
 $\sum_{i} \pi_i = 1$

attention allocation:

- high $m'(\tilde{r})$ focuses on the neighborhood of \tilde{r}
- high π_i focuses on the state i

constraints:

- $m(\cdot)$ is bounded your scale can't be fine everywhere
- $\sum_i \pi_i = 1$ you can't sample all the states frequently

Optimal Perception

suppose h and h_s are unimodal with a same mode and symmetric

Proposition Optimal encoding function is s-shaped: m(·) is convex below and concave above the modal reward Over-sampling of low-probability states: ^π_{J'} > ^p_{J'} when p_J < p_{J'}

intuition:

2

focus on reward values that you're likely to encounter at ties

- over-sample states that you expect to be poorly informed on
 - you measure tail rewards poorly
 - conditional on tie, low-probability state has more spread-out rewards since $\sum_{J'} p_{J'} r_{J'} = s$ isn't too informative about r_J when p_J is small

Optimal Perception

suppose h and h_s are unimodal with a same mode and symmetric

Proposition Optimal encoding function is s-shaped: m(·) is convex below and concave above the modal reward Over-sampling of low-probability states: ^π_J > ^p_J/_{p_{J'}} when p_J < p_{J'}

intuition:

2

focus on reward values that you're likely to encounter at ties

- over-sample states that you expect to be poorly informed on
 - you measure tail rewards poorly
 - conditional on tie, low-probability state has more spread-out rewards since $\sum_{J'} p_{J'} r_{J'} = s$ isn't too informative about r_J when p_J is small

link between perception and risk attitudes arises when decoding is coarse

• informed comparative statics on perception predicts choice

optimality arguments get some stylized facts about perception right

• we introduce marginal reasoning to psychophsysics