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Nonlinear Measurement Scales

physical instruments often use nonlinear measurement scales

this improves precision at some range of inputs

at the expense of precision at other values

psychophysics literature extends this to human perception

Kahneman & Tversky ’79 use this to justify S-shaped utility



Formalization
Robson ’01, Netzer ’09
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Formalization
Robson ’01, Netzer ’09

encode reward ri as m(ri ) + εi

choose your encoding function m

optimal encoding function as noise vanishes
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Our Contribution

Robson ’01, Netzer ’09:

perception of one-dimensional inputs

encoding function ∼ hedonic as opposed to Bernoulli utility

vanishing implications for choice

this paper:
1 exogenous perception ⇒ behavior

- coarse model ⇒ perception-driven risk attitudes
- well-specified model ⇒ risk-neutrality

2 optimal perception of lotteries

- microfounded objective
- s-shaped encoding function
- over-sampling of low-probability states
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Decision Problem
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risk-neutrality: lottery optimal ⇔ r :=
∑

i pi ri > s

set of states and probabilities fixed, and DM observes s frictionlessly

the DM:

measures each reward many times

estimates the lottery value given the collected data

controls the encoding function and sampling frequencies



Perception

perception strategy:

encoding function m : [r , r ] −→ [m,m]; exogenous span

sampling frequencies (πi )i ∈ ∆(set of states)

DM samples signals (ik , m̂k), k = 1, . . . , n:

ik specifies the state; sampling frequencies πi ̸= pi

m̂k = m (rik ) + εk ; iid standard normal noise

DM is sophisticated: knows conditional signal distributions

decoding: a map from perception data to the estimate of the lottery

nearly complete information: n → ∞

a posteriori optimal choice
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Simple Decoding

fix perception strategy m(·) and (πi )i

def simple decoding: DM’s estimate of lottery value = m−1(
∑n

k=1 m̂k)

Observation

The probability that the DM chooses the lottery in problem (r, s)
converges a.s. to 1 (0) as n → ∞ if∑

i

πim(ri ) > (<)m(s).

EU maximizer with Bernoulli utility m(·) and subjective probabilities πi



Oprea’23

two treatments:

1 genuine lottery (pi , ri )i vs safe option

2 certainty equivalent of (pi , ri )i vs safe option

nearly identical choices across the treatments

aggregation friction rather than risk aversion

our simple procedure fits Oprea’s subjects



Maximum Likelihood Estimate

the DM is endowed with a compact set A ⊆ [r , r ]I of anticipated lotteries

forms ML estimate of the lottery

qn ∈ argmax
r′∈A

n∏
k=1

φ
(
m̂k −m

(
r ′ik
))

Proposition

Suppose that the DM anticipates that the lottery involves no risk:

A =
{
r ∈ [r , r ]I : ri = rj for all states i , j

}
.

Then, she follows the simple decoding procedure.



Proof

White ’82: asymptotic MLE minimizes KL-divergence from the true
data-generating process, among all anticipated processes

MLE
a.s.−→ argmin

r ′∈A
DKL (fr ∥ fr′)

with Gaussian errors & no anticipated risk

DKL (fr ∥ fr′) =
I∑

i=1

πi (m (ri )−m (r ′i ))
2

hence MLE of m(r) →
∑I

i=1 πim(ri )
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Coarse Anticipation of Risk

DM anticipates lotteries to be measurable w.r.t. a partition of arms K

Proposition

Prob that DM chooses the lottery in problem (r, s) converges to 1 [0] if∑
J∈K

pJ r
∗
J > [<] s,

where, for each J ∈ K,

r∗J is the certainty equivalent m (r∗J ) =
∑

i∈J
πi∑
j∈J πj

m(ri )

pJ =
∑

i∈J pi is the true probability of J

anticipated risk: risk neutrality

unanticipated risk: risk attitudes



Impact of Prior Information

let’s bridge the gap between anticipated and unanticipated lotteries

joint limit of

number of signals

precision of prior density of Bayesian DM

effects of

time pressure

level of anticipated risk



Prior Belief and Sampling

prior ∝ exp
(
− n

∆σ2(r)
)
on [r , r ]I , where σ2(r) =

∑
i pi (ri − r)2

DM samples a× n perturbed messages

∆ – degree of the a priori anticipated risk

a – attention span, sample size increases with a

as n grows

- sample size grows
- risk becomes a priori unlikely



Lottery Perception

Proposition

The Bayesian estimate of lottery r converges to

q∗(r) = argmin
r′∈[r ,r ]I

{
1

a∆
σ2(r′) +

∑
i

πi (m (ri )−m (r ′i ))
2

}
.

limiting cases

a∆ large: close to risk-neutrality

a∆ small: close to the simple procedure

unstable risk attitudes

a → 0 vs. a → ∞: Kahneman’s thinking fast/slow

∆ → 0 vs. ∆ → ∞: Rabin’s paradox



Arrow-Pratt Measure

Proposition

Consider a lottery with small risk σ2. The Bayesian estimate of the
lottery value converges a.s. to

r +
1

2

m′′(r)

m′(r)
· σ2 · 1 + 4a∆m′2(r)

[1 + a∆m′2(r)]2
+ o(σ2).

a∆ → 0: the usual Arrow-Pratt measure for u(·) = m(·)
a∆ → ∞: risk-neutrality
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Objective

ex ante distribution of the decision problems (r, s)

all ri iid from continuously differentiable density h

s independently from continuously differentiable density hs

ex ante minimization of

L(n) = E [max {r , s} − 1qn>s r − 1qn≤ss]

equivalent to maximization of the expected chosen reward

loss becomes tractable as n diverges



Limit Loss

Proposition

If the encoding function m is continuously differentiable, then

L(n) = const. E

[∑
i

p2i
πim′2 (ri )

| r = s

]
1

n
+ O

(
1

n2

)
.



Limit Loss

Proposition

If the encoding function m is continuously differentiable, then

L(n) ∝ E [MSE conditional on tie] .

choice is distorted if s falls between r and value estimate qn

condition on ties: small perception error distorts choice only if r ≈ s

loss ∝ MSE



Limit Loss

Proposition

If the encoding function m is continuously differentiable, then

L(n) ∝ E

[∑
i

p2i MSE(ri ) conditional on tie

]
.

MSE is a weighted sum of MSEs for each ri



Limit Loss

Proposition

If the encoding function m is continuously differentiable, then

L(n) ∝ E

[∑
i

p2i MSE(ri ) conditional on tie

]
.

MSE(ri ) is mitigated by high πi and m′ (ri )



Information-Processing Problem

min
m′(·),(πi )i>0

E

[∑
i

p2i
πim′2(ri )

| r = s

]

s.t.:

∫ r

r

m′(r)dr ≤ m −m

∑
i

πi = 1

attention allocation:

high m′(r̃) focuses on the neighborhood of r̃

high πi focuses on the state i

constraints:

m(·) is bounded – your scale can’t be fine everywhere∑
i πi = 1 – you can’t sample all the states frequently



Optimal Perception

suppose h and hs are unimodal with a same mode and symmetric

Proposition

1 Optimal encoding function is s-shaped:
m(·) is convex below and concave above the modal reward

2 Over-sampling of low-probability states:
πJ

πJ′
> pJ

pJ′
when pJ < pJ′

intuition:

1 focus on reward values that you’re likely to encounter at ties
2 - over-sample states that you expect to be poorly informed on

- you measure tail rewards poorly
- conditional on tie, low-probability state has more spread-out rewards
since

∑
J′ pJ′ rJ′ = s isn’t too informative about rJ when pJ is small
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Conclusion

link between perception and risk attitudes arises when decoding is coarse

informed comparative statics on perception predicts choice

optimality arguments get some stylized facts about perception right

we introduce marginal reasoning to psychophsysics
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