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Nonlinear Measurement Scales

physical instruments often use nonlinear measurement scales
@ this improves precision at some range of inputs

@ at the expense of precision at other values

psychophysics literature extends this to human perception

o Kahneman & Tversky '79 use this to justify S-shaped utility



Formalization

Robson '01, Netzer '09

pick one of the two draws:
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Formalization

Robson '01, Netzer '09

encode reward r; as m(r;) + ¢;
choose your encoding function m

optimal encoding function as noise vanishes

1.0




Our Contribution

Robson '01, Netzer '09:
@ perception of one-dimensional inputs
@ encoding function ~ hedonic as opposed to Bernoulli utility

@ vanishing implications for choice

this paper:
@ exogenous perception = behavior

- coarse model = perception-driven risk attitudes
- well-specified model = risk-neutrality

@ optimal perception of lotteries
- microfounded objective
- s-shaped encoding function
- over-sampling of low-probability states



psychophysics:
Weber's law, Fechner 1860, Thurstone '27...

encoding of stimuli:
Attneave '54, Barlow et al. '61, Laughlin '81...

econ [riskless]:
Robson '01, Netzer '09, Rayo&Becker '07...

econ [risky, large noise]:
Friedman '89, Khaw&Li&Woodford '20, Frydman&Jin '19...

misspecification:
Berk '66, White '82, Esponda Pouzo '16, Heidhues et al. '18...
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Decision Problem

n
P1

versus alternative s

P2
r

risk-neutrality: lottery optimal < r:= 5" piri > s
set of states and probabilities fixed, and DM observes s frictionlessly

the DM:
@ measures each reward many times
@ estimates the lottery value given the collected data

@ controls the encoding function and sampling frequencies



perception strategy:

e encoding function m: [r,7] — [m, m]|; exogenous span

e sampling frequencies (7;); € A (set of states)

DM samples signals (ix, M), k =1,...,n:
@ i, specifies the state; sampling frequencies 7; # p;

@ 1My = m(r;,) + &g; iid standard normal noise

DM is sophisticated: knows conditional signal distributions
decoding: a map from perception data to the estimate of the lottery
nearly complete information: n — oo

a posteriori optimal choice
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Simple Decoding

fix perception strategy m(-) and (7;);

def simple decoding: DM'’s estimate of lottery value = m~*(>"] | i)

Observation

The probability that the DM chooses the lottery in problem (r, s)
converges a.s. to 1 (0) as n — oo if

Zwim(r,-) > (<) m(s)

EU maximizer with Bernoulli utility m(-) and subjective probabilities 7;



two treatments:
@ genuine lottery (p;, r;); Vs safe option

@ certainty equivalent of (p;, r;); Vs safe option

nearly identical choices across the treatments
aggregation friction rather than risk aversion

our simple procedure fits Oprea's subjects



Maximum Likelihood Estimate

the DM is endowed with a compact set A C [r, 7]’ of anticipated lotteries

forms ML estimate of the lottery

n
qn € argmaxH\p (e —m(r;))
reA 4

Proposition

Suppose that the DM anticipates that the lottery involves no risk:
A={re [r,7]" : ri = r; for all states ij}.

Then, she follows the simple decoding procedure.




White '82: asymptotic MLE minimizes KL-divergence from the true
data-generating process, among all anticipated processes

MLE 22 arg min Dy (£ || fir)
rreA

with Gaussian errors & no anticipated risk

1

Dt (f | f) =D mi(m(ri) — m(r}))*

i=1

hence MLE of m(r) — Z:l':l mim(r;)



White '82: asymptotic MLE minimizes KL-divergence from the true
data-generating process, among all anticipated processes

MLE 22 arg min Dy (£ || fir)
rreA

With Gaussian errors & no anticipated risk

1
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Coarse Anticipation of Risk

DM anticipates lotteries to be measurable w.r.t. a partition of arms /C

Proposition

Prob that DM chooses the lottery in problem (r,s) converges to 1 [0] if
Z piry > [<]s,
JeK

where, for each J € IC,

e rj is the certainty equivalent m (rj) = >, %m(n)
jed i

® py = )., piis the true probability of J

@ anticipated risk: risk neutrality

@ unanticipated risk: risk attitudes



Impact of Prior Information

let's bridge the gap between anticipated and unanticipated lotteries

joint limit of
@ number of signals

@ precision of prior density of Bayesian DM

effects of
@ time pressure

o level of anticipated risk



Prior Belief and Sampling

prior o< exp (— 2 a?(r)) on [r.7]', where o%(r) = >, pi(r;i — r)?
DM samples a x n perturbed messages

@ A — degree of the a priori anticipated risk
@ a — attention span, sample size increases with a
@ as n grows

- sample size grows
- risk becomes a priori unlikely



Lottery Perception

Proposition

The Bayesian estimate of lottery r converges to

v €[r, ]!

q*(r) = argmin {32020/) 4 ZTF,‘ (m(ri) — m(r,-/))2} J

limiting cases
@ aA large: close to risk-neutrality

@ aA small: close to the simple procedure

unstable risk attitudes
@ a — 0 vs. a— oco: Kahneman's thinking fast/slow

@ A — 0vs. A — oo: Rabin's paradox



Arrow-Pratt Measure

Consider a lottery with small risk o>. The Bayesian estimate of the
lottery value converges a.s. to

1m’(r) 5, 1+4+4aAm’(r) 2
T amn C EraamrR o)

@ aA — 0: the usual Arrow-Pratt measure for u(-) = m(-)
@ aAA — oo: risk-neutrality
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ex ante distribution of the decision problems (r,s)
@ all r; iid from continuously differentiable density h

@ s independently from continuously differentiable density hg
ex ante minimization of
L(n) = E[max{r,s} — Lg,oor — Lo <ss]

@ equivalent to maximization of the expected chosen reward

loss becomes tractable as n diverges



Proposition

If the encoding function m is continuously differentiable, then

2
L(n) = const. E [Z% |r=s




Proposition

If the encoding function m is continuously differentiable, then

L(n) o< E[MSE conditional on tie] .

choice is distorted if s falls between r and value estimate g,
condition on ties: small perception error distorts choice only if r ~ s

loss oc MSE



Proposition

If the encoding function m is continuously differentiable, then

L(n) < E [Z p?MSE(r;) conditional on tie] .

MSE is a weighted sum of MSEs for each r,



Proposition

If the encoding function m is continuously differentiable, then

L(n) < E [Z p?MSE(r;) conditional on tie] .

MSE(r;) is mitigated by high 7; and m’ (r;)



Information-Processing Problem

attention allocation:
@ high m'(F) focuses on the neighborhood of 7
@ high 7; focuses on the state /

constraints:
e m(-) is bounded — your scale can't be fine everywhere
@ ) .m =1—you can't sample all the states frequently



Optimal Perception

suppose h and hg are unimodal with a same mode and symmetric

Proposition

© Optimal encoding function is s-shaped:
m(-) is convex below and concave above the modal reward

@ Over-sampling of low-probability states:

U}
U

P

) when p; < py

intuition:

@ focus on reward values that you're likely to encounter at ties

over-sample states that you expect to be poorly informed on

you measure tail rewards poorly

conditional on tie, low-probability state has more spread-out rewards
since Y, pyry = s isn't too informative about r;, when p; is small



Optimal Perception

suppose h and hg are unimodal with a same mode and symmetric
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@ Optimal encoding function is s-shaped:
m(-) is convex below and concave above the modal reward

@ Over-sampling of low-probability states:
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Conclusion

link between perception and risk attitudes arises when decoding is coarse

@ informed comparative statics on perception predicts choice

optimality arguments get some stylized facts about perception right

@ we introduce marginal reasoning to psychophsysics



	Model
	From Perception to Choice
	Optimal Perception

