What's Wrong with Annuity Markets?

Stéphane Verani Pei Cheng Yu FRB UNSW

JEEA Teaching Materials

The views expressed in this paper do not necessarily reflect the views of the Board of Governors of the Federal Reserve System, or its staff

What drives high annuity markups?

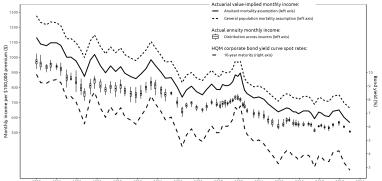
• Life annuities are useful to insure against late consumption risk

Annuity prices are higher than what actuarial values suggest

• High markups often attributed to adverse selection

But adverse selection only accounts for about half of markups

A large fraction of single premium immediate annuities markups cannot be explained by adverse selection



- Income offered by insurers declines in tandem with bond yields
- Industry's average adverse selection pricing is stable/declining
- Substantial variation in AS-adjusted markups across insurers

We show that insurer risk management drives the variation in markup that is not explained by adverse selection

- Theory: Three period economy with an interest rate shock
 - Limited liability life insurers (insolvency risk)
 - Constrained supply of long-term bonds (endogenous)
 - ⇒ Insurers manage interest rate risk with net worth
- **Evidence:** 30 years of annuity price data from 100 insurers
 - Over 600 prices from about 20 insurers per period
- Identification: Shocks that differentially affect the average cost curve (liability) and average bond demand curve (asset) for different annuity contracts offered by the same insurer

Why should you care?

- There is a gap in the literature
 - Finance literature studies financial institution risk management
 - Insurers in macro/public finance models abstract from it
- Difficult to disentangle supply- and demand-side frictions
- Macro environment and monetary policy may have a dramatic impact on individuals' ability to transfer longevity risk
 - QE programs may distort the set of financial contracts
 - Revisit the welfare implications of retirement reforms

Outline

- 1. Background on the life annuity business
- 2. Annuity pricing with adverse selection and interest rate risk
- 3. Identification of the interest risk management channel
- 4. Main empirical results
- 5. Interaction of adverse selection and interest rate risk
- 6. Cross-sectional evidence using swaps

Outline

- 1. Background on the life annuity business
- 2. Annuity pricing with adverse selection and interest rate risk
- 3. Identification of the interest risk management channel
- 4. Main empirical results
- 5. Interaction of adverse selection and interest rate risk
- 6. Cross-sectional evidence using swaps

Life insurers earn the spread between the yield on their assets and the rate they credit on their liabilities

- Life annuities are long-term fixed rate liabilities that are illiquid
- Insurers invest in fixed-income securities to match cash flow
- Illiquidity of liabilities lets insurers invest in illiquid assets
- Industry is the largest corporate bonds investor since the 1930s
- **Key issue:** Corporate debt maturity tends to be short
 - ⇒ Life insurers are exposed to interest rate risk

Life insurers manage interest rate risk with net worth

Life insurer's balance sheet

Assets	Liabilities
Corporate bonds	Annuities
Commercial real estate loans	Life insurance
Mortgage-backed securities	Net worth

- Duration D of an Asset or Liability: $D = -\frac{\partial PV}{\partial R} \frac{R}{PV}$
- $D_L > D_A$: Liabilities PV changes faster than asset PV
- Net worth cushions unbalanced changes in asset-liability PV
 - What is the optimal level of net worth?
 - How do insurers finance their net worth?
 - What is the effect of risk management on annuity prices?

Outline

- 1. Background on the life annuity business
- 2. Annuity pricing with adverse selection and interest rate risk
- 3. Identification of the interest risk management channel
- 4. Main empirical results
- 5. Interaction of adverse selection and interest rate risk
- 6. Cross-sectional evidence using swaps

A model of adverse selection and interest rate risk

Post price q; Interest rate shock Insurers Choose asset portfolio R_2 realized: + capital structure Rebalance portfolio t = 0t = 1t=2Survive with Annuitants Purchase Survive with probability α of type α annuity $a(\alpha, q)$ probability α

- Financial instruments: One- and two-period bonds, annuities
- Demand-side frictions: Adverse selection, $\alpha \in A$ is private info
- Supply-side frictions:
 - 1. Insurers operate under limited liability
 - 2. Two-period bond supply is inefficient, $\psi=\frac{1}{R_l}-\frac{1}{R_1}\mathbb{E}\left(\frac{1}{R_2}\right)>0$

Assumptions on annuity demand

- Individual annuity demand $a(\alpha, q)$ satisfies:
 - i. $a(\alpha,q)$ is differentiable in α and q, with $\frac{\partial a}{\partial \alpha}>0$ and $\frac{\partial a}{\partial q}<0$
 - ii. $\exists \alpha \in (\underline{\alpha}, \overline{\alpha})$ such that $a(\alpha, q) > 0$ when $q = \frac{\overline{\alpha}}{R_1} (1 + \overline{\alpha})$
 - iii. $a(\alpha, q) = 0 \forall \alpha$ and q if there is a positive probability that the insurer is insolvent in period $t \geq 1$ and $a(\alpha, q) \geq 0$ otherwise
- For any annuity price q, individuals with higher longevity risk are less responsive to annuity price changes:

$$\operatorname{cov}\left(\alpha^2, \frac{\partial a\left(\alpha, q\right)}{\partial q}\right) \leq 0$$

Optimal interest rate risk management strategy given q

t = 0		
Assets	Liabilities	
Bond holdings	Annuity liabilities $=\int_{A}rac{lpha}{R_{1}}\left[1+lpha\mathbb{E}\left(rac{1}{R_{2}} ight) ight]$ $a\left(lpha,q ight)dG\left(lpha ight)$	
$\it b_1$ and $\it l_2$	$NW_0 = \int_{lpha}^{\overline{lpha}} lpha^2 \psi a(lpha, q) g(lpha) dlpha$	
$\mathbf{t}=1$: R_2 is realized		
Assets	Liabilities	
Bond holdings	Annuity liabilities $=rac{1}{R_{2}}\int_{A}lpha^{2}a\left(lpha,q ight)dG\left(lpha ight)$	
$b_2(R_2)$	$NW_1\left(R_2\right)=0$	

$$b_{1}=\frac{1}{R_{1}}\int_{A}\alpha a\left(\alpha,q\right)dG\left(\alpha\right)\;;\\ l_{2}=\frac{1}{R_{I}}\int_{A}\alpha^{2}a\left(\alpha,q\right)dG\left(\alpha\right);\\ b_{2}\left(R_{2}\right)=\frac{1}{R_{2}}\int_{A}\alpha^{2}a\left(\alpha,q\right)dG\left(\alpha\right);\\ b_{3}\left(R_{2}\right)=\frac{1}{R_{2}}\int_{A}\alpha^{2}a\left(\alpha,q\right)dG\left(\alpha\right);\\ b_{4}\left(R_{2}\right)=\frac{1}{R_{2}}\int_{A}\alpha^{2}a\left(\alpha,q\right)dG\left(\alpha\right);\\ b_{5}\left(R_{2}\right)=\frac{1}{R_{2}}\int_{A}\alpha^{2}a\left(\alpha,q\right)dG\left(\alpha\right);\\ b_{7}\left(R_{2}\right)=\frac{1}{R_{2}}\int_{A}\alpha^{2}a\left(\alpha,q\right)dG\left(\alpha\right);\\ b_{7}\left(R_{2}\right)=\frac{1}{R_{2}}\int_{A}\alpha^{2}a\left(\alpha,q\right)dG\left(\alpha\right);\\ b_{8}\left(R_{2}\right)=\frac{1}{R_{2}}\int_{A}\alpha^{2}a\left(\alpha,q\right)dG\left(\alpha\right);\\ b_{8}\left(R_{2}\right)=\frac{1}{R_{2}}\int_{A}\alpha^{2}a\left(\alpha,q\right)dG\left(\alpha\right);$$

- Insurer prefers hedging the IRR with long-term bonds
- ψ shapes the relative cost of hedging with NW

Bertrand competition drives the annuity price q^* down subject to maintaining the interest rate hedge

Equilibrium annuity price:

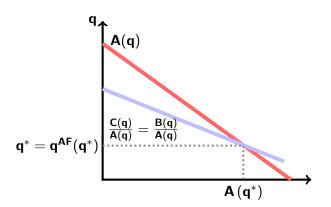
$$q^{*} = \underbrace{\frac{\int_{\underline{\alpha}}^{\overline{\alpha}} \frac{\alpha}{R_{1}} \left[1 + \alpha \mathbb{E} \left(\frac{1}{R_{2}} \right) \right] a(\alpha, q^{*}) dG(\alpha) + \psi \int_{\underline{\alpha}}^{\overline{\alpha}} \alpha^{2} a(\alpha, q^{*}) dG(\alpha)}_{\int_{\underline{\alpha}}^{\overline{\alpha}} a(\alpha, q^{*}) dG(\alpha)}$$

Insurer's average bond demand $B(q^*)/A(q^*)$

Actuarially fair price:

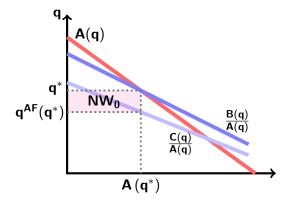
$$q^{AF} = \underbrace{\frac{\frac{1}{R_{1}} \int_{\underline{\alpha}}^{\overline{\alpha}} \alpha \left[1 + \alpha \mathbb{E} \left(\frac{1}{R_{2}} \right) \right] a(\alpha, q^{*}) dG(\alpha)}_{\int_{\underline{\alpha}}^{\overline{\alpha}} a(\alpha, q^{*}) dG(\alpha)}}_{\text{Insurer's average cost } C(q^{*})/A(q^{*})}$$

When the supply of long-term bonds is **efficient** ($\psi = 0$), the insurer invests in a portfolio of bonds that perfectly hedge the interest rate risk



Non-contingent bond portfolio "replicates" AD securities

When the supply of long-term bonds is **inefficient** $(\psi > 0)$, the insurer charges a markup to build net worth



Low long-term bond returns increase the cost of hedging IRR

Relative cost of hedging IRR with long-term bonds holdings increases when long-term bond returns decreases

• Unique level of average net worth financed by annuity markup:

$$\underbrace{q^* - q^{AF}}_{\text{AS-adjusted markup}} = \underbrace{\frac{NW_0\left(q^*\right)}{A\left(q^*\right)}}_{\text{Insurer's average net worth}}$$

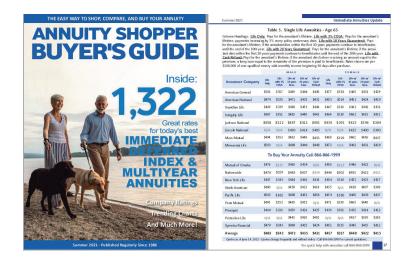
More constrained bond market means higher markup

$$\frac{\partial q^*}{\partial \psi} - \frac{\partial q^{AF}(q^*)}{\partial \psi} > 0$$

Outline

- 1. Background on the life annuity business
- 2. Annuity pricing with adverse selection and interest rate risk
- 3. Identification of the interest risk management channel
- 4. Main empirical results
- 5. Interaction of adverse selection and interest rate risk
- 6. Cross-sectional evidence using swaps

We collect annuity price data from the 1989-2019 issues of the *Annuity Shopper Buyer's Guide*



Annuity markups measurement

• M-year guaranteed single premium immediate annuity value

$$V_t^i(\mathsf{age},\mathsf{sex},M,r) = \underbrace{\sum_{m=1}^M \frac{1}{R_t(m,r)^m}}_{\mathsf{M-year \ term \ certain \ annuity}} + \underbrace{\sum_{m=M+1}^{N_{\mathsf{Sex}}^i - \mathsf{age}} \frac{\prod_{l=0}^{m-1} p_{\mathsf{sex},\mathsf{age}+l}^i}{R_t(m,r)^m}}_{\mathsf{Life \ annuity \ from \ year \ }M+1}$$

• r : Discount rate of the marginal investor in the insurer

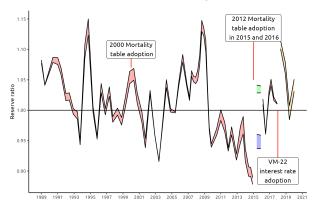
• *i* : Mortality assumption (**annuitants** or **general** population)

$$P_{t}(\text{age}, \text{sex}) - V_{t}^{\text{general}}(\text{age}, \text{sex}, r) = \underbrace{P_{t}(\text{age}, \text{sex}) - V_{t}^{\text{annuitant}}(\text{age}, \text{sex}, r)}_{\text{Adverse selection adjusted markup}} + \underbrace{\left(V_{t}^{\text{annuitant}}(\text{age}, \text{sex}, r) - V_{t}^{\text{general}}(\text{age}, \text{sex}, r)\right)}_{\text{Average adverse selection pricing}}$$

Identification: Shocks that differentially affect the average cost curve and average bond demand curve

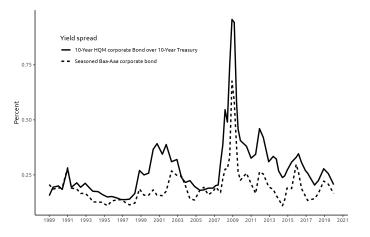
- 1. Contract-level reserve requirement shocks
 - Regulatory interest rate is fixed and resets infrequently
 - Contract maturities create exogenous variation in relative cost
 - → Exogenous shifter of average cost and bond demand curve
- 2. Long-term investment grade bond spread shock
 - Wider spreads mean higher average coupon rates
 - Shocks the tradeoff between long-term bonds and NW
 - → Exogenous shifter of average bond demand curve

1. Contract-level reserve requirement shocks



- $\frac{V_{jt}^{\text{regulator}}(r=\text{flat rate})}{V_{jt}^{\text{insurer}}(r=\text{yield curve})}$ for a 65 and 70 years old male
- Regulatory interest rate is fixed and resets infrequently
- Contract maturities create exogenous variation in relative cost
 - Insurer needs to create a larger liability and buy more bonds

2. Long-term investment grade bond spread shock



- Conditional on the insurer funding cost, wider spreads mean higher coupon for given credit risk and maturity
 - Insurer needs fewer bonds for hedge the same annuity liability

Outline

- 1. Background on the life annuity business
- 2. Annuity pricing with adverse selection and interest rate risk
- 3. Identification of the interest risk management channel
- 4. Main empirical results
- 5. Interaction of adverse selection and interest rate risk
- 6. Cross-sectional evidence using swaps

Test: Looking at an insurer offering multiple contracts with exogenously varying reserve requirements, what is the effect of a widening of long-term bond spread on the AS-adjusted markup?

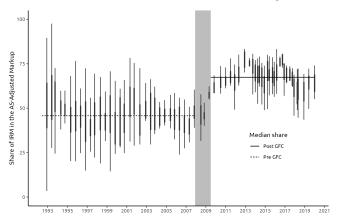
$$\begin{split} \textit{AS_adj_markup}_{ijt} = & \beta_1 \textit{BaaAaa_spread}_t \times \textit{Reserve_Ratio}_{jt} \\ & + \beta_2 \textit{BaaAaa_spread}_t + \beta_3 \textit{Reserve_Ratio}_{jt} \\ & + \beta_4 10 \textit{_HQM_spread}_t + \mathbf{z}'_{it} \gamma \\ & + [\text{controls interacted with } \textit{BaaAaa_spread}_t] \\ & + \alpha_1^i + \alpha_2^j + \epsilon_{ijt} \end{split}$$

- α_1^i insurer fixed effect; α_2^j product fixed effects
- \mathbf{z}'_{it} insurer-level time varying financial variables

Insurers raise their AS-adjusted markup when the relative cost of hedging IRR with long-term bonds increase

Dependent variable:	AS adjusted marku p_{ijt}		
Reserve Ratio $_{jt} \times Baa$ -Aaa spread $_t$	-29.18***	-22.53**	-22.05**
	(9.75)	(10.95)	(10.92)
Reserve_Ratio _{it}	41.98***	33.76***	32.70***
	(9.95)	(10.85)	(10.81)
Baa-Aaa.spread _t	25.61***	17.83*	17.40*
	(8.71)	(9.74)	(9.68)
Additional controls	Y	Y	Y
Fixed effects:			
Contract charac. (i)	Υ	Υ	N
Insurer (i)	Υ	Υ	N
Insurer $(i) \times \text{Contract charac.} (j)$	N	N	Υ
SE Clustering	Insurer/Date	Insurer/Date	Insurer/Date
Observations	40,790	29,462	29,462
Adjusted R ²	0.54	0.57	0.64

IRM could account for most of the AS-adjusted markup

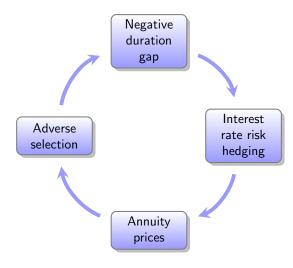


- 5-year term certain annuities are similar to banks' CDs
 - No adverse selection and little interest rate risk
 - Markup largely reflect insurers' expenses and market structure
- Difference it out of the life annuity AS-adjusted markup

Outline

- 1. Background on the life annuity business
- 2. Annuity pricing with adverse selection and interest rate risk
- 3. Identification of the interest risk management channel
- 4. Main empirical results
- 5. Interaction of adverse selection and interest rate risk
- 6. Cross-sectional evidence using swaps

Interaction of interest rate risk and adverse selection



An increase in interest rate risk management cost amplifies adverse selection

• $z = R_1/R_I$: Higher z means a more constrained bond market:

$$\frac{\partial q^*}{\partial z} = \underbrace{\frac{\frac{1}{R_1} \int_{\underline{\alpha}}^{\overline{\alpha}} \alpha^2 a(\alpha, q^*) g(\alpha) d\alpha}{\int_{\underline{\alpha}}^{\overline{\alpha}} a(\alpha, q^*) g(\alpha) d\alpha}}_{\text{Risk management effect}} + \underbrace{\frac{\partial q^*}{\partial z} \frac{\int_{\underline{\alpha}}^{\overline{\alpha}} e(\alpha, q^*) \left[1 - \frac{\frac{\alpha}{R_1}(1 + \alpha z)}{q^*}\right] a(\alpha, q^*) g(\alpha) d\alpha}_{\text{Adverse selection effect}}}_{\text{Adverse selection effect}}$$

• $e(\alpha, q)$ is the price elasticity of demand for type α

Compare the change in AS pricing for contracts offered by the **same** insurer with **different** guarantee periods in response to the **same** reserve requirement shock

$$AS_pricing_{ijt} = \frac{P_{ijt}}{V_{jt}^{\text{general}}(r = \text{insurer})} - \frac{P_{ijt}}{V_{jt}^{\text{annuitant}}(r = \text{insurer})}$$

$$\begin{split} \textit{AS_pricing}_{ijt} = & \beta_1 10 \textit{yr_guarantee_period} \times \textit{Reserve_Ratio}_{ijt} \\ + & \beta_2 20 \textit{yr_guarantee_period} \times \textit{Reserve_Ratio}_{ijt} \\ + & \beta_3 10 \textit{yr_guarantee_period} + \beta_4 20 \textit{yr_guarantee_period} \\ + & \beta_5 \textit{Reserve_Ratio}_{ijt} + \text{ [additional controls]} \\ + & \alpha_1^i + \alpha_2^j + \epsilon_{ijt} \end{split}$$

Exogenous increases in reserve requirement disproportionately increase the AS pricing of life annuities with 10 and 20 year guarantees

Dependent variable:	AS_pricing _{ijt}		
Reserve_Ratio _{jt}	-19.26***	-21.10***	
	(3.26)	(4.22)	
10yr_Guarantee	-29.97***	-27.74***	
	(3.43)	(3.77)	
10 yr_Guarantee $ imes$ Reserve_Ratio $_{jt}$	25.25***	23.15***	
	(3.35)	(3.75)	
20yr_Guarantee	-34.83***	-34.33***	
	(3.69)	(4.45)	
20 yr_Guarantee \times Reserve_Ratio $_{jt}$	26.83***	26.49***	
	(3.59)	(4.43)	
Additional controls	Υ	Υ	
Insurer FE	Υ	Υ	
Observations	40,790	29,462	
Adjusted R ²	0.70	0.68	

Outline

- 1. Background on the life annuity business
- 2. Annuity pricing with adverse selection and interest rate risk
- 3. Identification of the interest risk management channel
- 4. Main empirical results
- 5. Interaction of adverse selection and interest rate risk
- 6. Cross-sectional evidence using swaps

Cross-sectional evidence using interest rate derivatives

- Insurers add duration with *fixed-for-float* interest rate swaps
- Equivalent to financing fixed rate bonds with short-term debt
- Positive swap duration hedges against a flattening yield curve
- Insurers' NW is favorably/adversely affected by interest rate shocks ex-post through their ex-ante hedging program
- Focus on zero lower bound period 2009-2015:
 - All variation in the yield curve comes from the long end

How would insurers on opposite ends of hedging performance change their AS-markups when the yield curve flattens?

$$\begin{split} \textit{AS_adj_markup}_{ijt} = & \beta_1 10 Y 3 \textit{M_Treasury_spread}_t \times \textit{Net_swap_duration}_{it} \\ & + \beta_2 \textit{Net_swap_duration}_{it} + [\text{additional controls}] \\ & + \alpha_1^i + \alpha_2^j + \alpha_3^t + \epsilon_{ijt} \end{split}$$

- Net_swap_duration_{it}:
 - 82,000 individual swap contract positions from 44 insurers
 - Calculate aggregate net swap duration relative general account
- α_1^i insurer fixed effect
- α_2^j product fixed effects
- α_3^t date fixed effects

Although their interest rate hedge is effective on average, insurers at the top of the *Net_swap_duration*_{it} distribution cut their AS-adjusted markup when the yield curve flattens

Dependent variable:	AS_adjusted_markup _{ijt}
$Net.swap.duration_{it} \times 10Y-3M.Treasury_spread_t$	5.04**
	(2.32)
Net swap duration it	-8.85
	(5.97)
Insurer financial/bond market controls	Υ
Contract characteristics (j) , Insurer (i) , date (t) FE:	Υ
SE Clustering	Insurer/Date
Observations	9,149
Adjusted R ²	0.67

How would **different** insurers on opposite ends of hedging performance change their AS-markups when the yield curve flattens?

```
Q_{AS\_adj\_markup_{iit}}(\tau|\mathbf{x}'_{iit})
= \beta_3(\tau) 10 Y 3 M_Treasury_spread<sub>t</sub> \times Net_swap_duration<sub>it</sub>
+ \beta_1(\tau)Net_swap_duration<sub>it</sub> + \beta_2(\tau)10 Y 3 M_Treasury_spread<sub>t</sub>
+ additional controls + \alpha_1^i + \alpha_2^j
```

- \bullet τ percentile of the distribution
- α_1^i insurer fixed effect
- α_2^J product fixed effects

The least competitive insurers that are the most beneficially affected by the interest rate shocks disproportionately cut their AS-adjusted markup

Dependent variable: AS_adjusted_markup _{ijt}	$\tau = 0.25$	au=0.5	$\tau = 0.75$
Netswap duration _{it} × 10Y-3M Treasury spread _t	6.78***	4.62***	3.94***
	(0.56)	(0.35)	(0.35)
Net_swap_duration _{it}	-14.98***	-9.34***	-8.46***
	(1.59)	(1.09)	(1.03)
$10Y$ - $3M$. Treasury_spread $_{ m t}$	7.79*	9.34***	7.96**
	(3.07)	(2.81)	(2.61)
Other controls: Reserve.Ratio _{ijt} ,Baa-Aaa.spread _t ,10.HQM.spread _t			
Fixed Effects: Contract (j) , Insurer (i) , date (t))		
Observations	9,149		
χ_1^2 -test	26.3***		
SE	Clustered bootstrap		

Conclusion

- Interest rate risk management drives annuity markups
- Limits on fixed income duration/yield constrain supply
 - Life insurer invests in increasingly illiquid assets
- Ongoing work:
 - Measuring interest rate risk management by financial institutions
 - Estimating life insurers' cost of capital
 - Designing optimal retirement reforms with private annuities