Uncertainty, Investment and Productivity with Relational Contracts

Teaching Materials for JEEA Article

James M. Malcomson¹

¹Department of Economics University of Oxford

December 2023

Introduction

- Paper: about effect of uncertainty on investment and productivity with relational contracts
 - issue: how to reconcile evidence that effect is adverse with traditional theory that, with risk-neutral agents, would not be
- Recent literature: focussed on option value of not making irreversible investments (Dixit-Pindyck, 1994)
 - gives rise to adjustment, not long-run equilibrium, effect
 - calibration in Bloom (2009) has most of adjustment in 3 years
 - \bullet now that data > 13 years after 2007 crisis, know not what happened
 - Bloom et al (2018) find need (unappealing) negative mean total factor productivity (TFP) shock to capture, not just increase in uncertainty
- With relational contracts: greater uncertainty with no change in mean affects long-run equilibrium investment with risk-neutral parties
 - general investment (equally valuable with alternative partners) reduced
 - specific investment (valuable only with current partner) may increase
 - of interest because Bloom (2014) comments that some investments increase with greater uncertainty

Introduction 2

With each recession (shaded area), investment drops, then starts to grow but not back to previous path (as would with irreversible investment):

Introduction 3

This paper shows:

- **calibration** of relational contract model with risk-neutral parties and parameters based on Bloom *et al* (2018):
 - with general investment (equally valuable with alternative partners) can generate
 - decrease of magnitude in data with just greater uncertainty (no change in mean)
 - under a wide variety of conditions
 - with specific investment (valuable only with current partner) can do likewise
 - but under more restrictive conditions

The model: key elements

- MacLeod & Malcomson (1989) plus:
 - uncertainty: productivity of "effort" has iid shock each period
 - investment in capital: can enhance productivity of relationship
- **Principal's payoff** in period t conditional on being matched: $y(e_t, K, \theta_t) W_t$, where W_t is payment to agent and:
 - $y(e_t, K, \theta_t)$: (non-contractible) output at t
 - ullet $e_t \in [0,ar{e}]$: agent's non-contractible effort at t, chosen after $heta_t$ known
 - $K \in [0, \bar{K}]$: capital investment at start of relationship at cost C(K)
 - $\theta_t \in [\underline{\theta}, \overline{\theta}]$: iid random variable distributed $F(\theta, \sigma)$, with $dF(\theta, \sigma) > 0$ for all $\theta \in [\underline{\theta}, \overline{\theta}]$, parameterized by σ and observed by both parties at start of period t
- **Agent's payoff** in period t conditional on being matched: $W_t c(e_t)$, where $c(e_t)$ is increasing and convex cost of effort
- Payoffs if unmatched: principal $\underline{v}(K, \sigma) \geq 0$, agent $\underline{u}(K, \sigma) \geq 0$, with $\underline{s}(K, \sigma) := \underline{u}(K, \sigma) + \underline{v}(K, \sigma) > 0$, for all $K \in [0, \overline{K}]$
- **Discount factor** for both parties δ

Key result on effort

Effort unenforceable in court because output and effort non-contractible

- so limited to what is in current interest of both parties
- $S(K, \sigma)$: joint (principal + agent) payoff from one period before shock θ realized given K and σ

Proposition

An effort schedule $e(K, \theta, \sigma)$ that generates expected joint payoff $S(K, \sigma)$ each period with capital stock K and distribution σ can be implemented by a stationary contract if and only if

$$\frac{\delta}{1-\delta}[S(K,\sigma)-\underline{s}(K,\sigma)] \ge c(e(K,\theta,\sigma)), \quad \text{for all } \theta \in [\underline{\theta},\bar{\theta}]. \tag{1}$$

- (1) requires joint payoff gain from future exceeds cost of effort now
 - irrelevant how $S(K, \sigma)$ divided between principal and agent

Intuition for key result on effort

- Intuition: if agent not going to be paid today for effort today:
 - will not deliver more effort than compensated for by gain from future continuation of relationship
 - so: maximum effort constrained by total future gain from continuation
- Not necessary that agent receives all this future payoff gain
 - could receive bonus pay from principal today
 - but: only in principal's interest to pay bonus if less than future payoff gain from continuing relationship
- **So:** how total future payoff gain from continuation divided between principal and agent unimportant for how much effort can be achieved

Implications of key result on effort

Key equation is

$$\frac{\delta}{1-\delta}[S(K,\sigma)-\underline{s}(K,\sigma)] \ge c(e(K,\theta,\sigma)), \quad \text{for all } \theta \in [\underline{\theta},\bar{\theta}]. \tag{2}$$

- ullet With *iid* shocks, left-hand side is independent of current heta
 - first-best effort $e^*(K, \theta)$ is increasing in θ
 - if constraint not binding for θ , implement first-best effort
 - ullet so: if constraint binding for $heta= ilde{ heta}$, it is certainly binding for all higher heta
- ullet Implication: binding constraint restricts how much can adjust to heta
 - if, without constraint, joint payoff is linear in θ (risk neutrality)
 - with constraint, joint payoff is strictly concave
 - so: make general investment choice as if risk averse
 - specific investment relaxes constraint (2) because increases joint payoff gain from future
 - so greater uncertainty may increase return to investment

Illustration of effort constraint

- Thin line: first-best effort for given capital stock
- Dotted line: highest effort sustainable given total future payoff gain
- Thick line: optimal effort with relational contract
- Use term *cutoff shock* for shock above which effort with relational contract constrained
 - equals 1 in case illustrated in figure

Implications of effort constraint

- Effort constraint makes risk-neutral parties behave as if risk-averse
- Potential explanation for various puzzles
 - example: why private sector may not undertake socially worthwhile major infrastructure projects
- In this paper, apply to puzzle of response of investment to economic shocks
 - much of paper taken up with propositions for general specification showing effect of less risky distribution (in sense of second-order stochastic dominance) on general and on specific investment
 - here will concentrate on showing empirical implications in calibrated version of model

Functional forms for calibration

As literature, Cobb-Douglas production and iso-elastic cost functions:

$$\begin{split} y\left(e,K,\theta\right) &= \theta^{\gamma}K^{\alpha}e^{\beta}, \quad \alpha,\beta,\gamma > 0, \quad \alpha+\beta \leq 1; \\ c\left(e\right) &= ce^{n}, \quad c > 0, \, n \geq 1, \, n > \beta/\left(1-\alpha\right); \\ C\left(K,\sigma\right) &= C\left(\sigma\right)K^{k}, \quad C\left(\sigma\right) > 0, \, k \geq 1. \end{split}$$

Joint payoff if no relational contract constraint (first-best effort)

$$s\left(e^{*}\left(K,\theta\right),K,\theta\right) = \left(1 - \frac{\beta}{n}\right) \left(\frac{\beta}{nc}\right)^{\frac{\beta/n}{1-\beta/n}} \theta^{\frac{\gamma}{1-\beta/n}} K^{\frac{\alpha}{1-\beta/n}}$$

- Risk neutrality requires $\gamma = 1 \beta/n$:
 - ullet so expected joint payoff affected by heta only through its mean
- Distribution of θ log-normal:
 - implies always interior cutoff shock for first-best effort

Implications of functional forms for relational contract

ullet Joint payoff with relational contract and $ilde{ heta}$ cutoff shock

$$s\left(e^{*}\left(K,\tilde{\theta}\right),K,\theta\right) = \left(\frac{\beta}{nc}\right)^{\frac{\beta/n}{1-\beta/n}}\tilde{\theta}^{\frac{\gamma}{1-\beta/n}}K^{\frac{\alpha}{1-\beta/n}}\left[\left(\frac{\theta}{\tilde{\theta}}\right)^{\gamma} - \frac{\beta}{n}\right]$$
(3)

Note that strictly concave in heta for given $ilde{ heta}$ when $\gamma < 1$

- A **proposition** gives conditions for change from σ_L (low risk) to σ_H (high risk) with relational contract to exactly match
 - ratios of productivity and capital of change from $\sigma_L^{'}$ to $\sigma_H^{'}$ without relational contract
 - for general capital, quite generally exists a relational contract specification that does this
 - for specific capital, less flexibility

Goal of calibration exercise

- To generate empirically more realistic simulations, Bloom et al (2018) use 2% negative first-moment shock
 - implies $E(\theta \mid \sigma'_H) / E(\theta \mid \sigma'_I) = 0.98$
- Here look for relational contract specifications with $E(\theta \mid \sigma_H) = E(\theta \mid \sigma_I) \equiv E(\theta)$
 - with same effect on capital and productivity
- To explore, calibrate model with parameters from Bloom et al (2018)
- Convenient to express results in terms of $\hat{\theta}^i(\sigma)$, for i = G, S
 - defined as optimal cutoff θ at which relational contract constraint becomes binding for general and specific capital respectively when capital chosen optimally
 - and in terms of

$$\hat{S}(\sigma) = \frac{\delta}{1 - \delta} [S(K, \sigma) - \underline{s}(K, \sigma)]. \tag{4}$$

Parameters for calibration

Based on Bloom et al (2018), combining aggregate σ^A and firm σ^Z shocks

Parameter	Value	Source
δ	$0.95^{1/4}$	Bloom et al (2018), annual discount factor of 95%
α	0.25	Factor share with isoelastic demand, 33% markup
β	0.5	As α with labour share 2/3, capital share 1/3
n	1	Implied by Bloom et al (2018) model
k	1	Implied by Bloom et al (2018) model
σ_{L}^{A}	0.67	Bloom et al (2018) estimate, %
$ \begin{array}{l} \sigma_H^A/\sigma_L^A \\ \sigma_L^Z \\ \sigma_H^Z/\sigma_L^Z \end{array} $	1.6	Bloom et al (2018) estimate
$\sigma_L^{\dot{Z}}$	5.1	Bloom et al (2018) estimate, %
σ_H^Z/σ_I^Z	4.1	Bloom et al (2018) estimate
σ_{L}	0.10	Calculated combined σ_L^A and σ_L^Z for θ
σ_H/σ_L	4.07	Calculated from combined σ_H^A and σ_H^Z for θ

Table: Parameter values for calibration

14 / 20

Calibration results for general capital

- For general capital, continuum of values for $\hat{\theta}^G\left(\sigma_L\right)/E\left(\theta\right)$ between 0 and 1.57507
 - that match ratios of productivity and capital change with $E(\theta \mid \sigma_H) = E(\theta \mid \sigma_L) \equiv E(\theta)$
 - ullet thus values of $\hat{ heta}^{\dot{G}}$ (σ_L) both below and above the mean
- Columns in next table illustrate with values of $\hat{\theta}^{G}\left(\sigma_{L}\right)/E\left(\theta\right)$ interspersed between these
- In each case, $\hat{\theta}^{G}\left(\sigma_{H}\right)/E\left(\theta\right)$ is at least as high as $\hat{\theta}^{G}\left(\sigma_{L}\right)/E\left(\theta\right)$
 - so higher cutoff θ below which effort is first best for σ_H than for σ_L
 - difference greatest for $\hat{ heta}^{G}\left(\sigma_{L}\right)$ somewhat above its mean
 - difference essentially negligible for $\hat{\theta}^G\left(\sigma_L\right)$ at each end of its acceptable range

General capital matching specifications

Matching specifications

$\frac{\hat{\theta}^{G}(\sigma_{L})}{E(\theta)}$	0.01	0.25	0.50	0.75	1.00	1.25	1.57507
$\frac{\hat{\theta}^{G}(\sigma_{H})}{E(\theta)}$	0.01008	0.2502	0.504	0.809	1.312	1.570	1.57507
$\frac{\hat{S}(\sigma_H)C(\sigma_H)}{\hat{S}(\sigma_L)C(\sigma_L)}$	0.98078	0.9808	0.988	1.057	1.286	1.231	0.980
$\frac{\hat{S}(\sigma_H)}{\hat{S}(\sigma_L)}$ a	0.9207	0.9207	0.927	0.992	1.207	1.805	0.920

Table: General capital relational contract values with $E\left(\theta\mid\sigma_{H}\right)=E\left(\theta\mid\sigma_{L}\right)$ matching $E\left(\theta\mid\sigma_{H}'\right)/E\left(\theta\mid\sigma_{L}'\right)=0.98$ (Note:^a for $C\left(\sigma_{L}\right)/C\left(\sigma_{H}\right)=0.939$.)

- $\hat{S}\left(\sigma_{H}\right)/\hat{S}\left(\sigma_{L}\right)$ is ratio of joint payoff gain from continuing relationship over ending it for σ_{H} to that for σ_{L}
 - 3rd row gives the ratio of $\hat{S}\left(\sigma\right)$ $C\left(\sigma\right)$ for $\sigma=\sigma_{H}$ to that for $\sigma=\sigma_{L}$
 - Bloom et al (2018) do not report capital costs corresponding to $C(\sigma)$
 - could infer $C\left(\sigma_L\right)/C\left(\sigma_H\right)=0.939$ from long-run effects on capital and productivity but limitations

General capital matching specifications: implications

- Consider two kinds of shocks
 - systemic: affects values of both continuing and ending relationship
 - for systemic shocks, $\hat{S}\left(\sigma\right)$ independent of σ
 - specific: affects only value of continuing relationship
- If shocks entirely *systemic*, $\hat{S}\left(\sigma_{H}\right) = \hat{S}\left(\sigma_{L}\right)$
 - implies $\hat{\theta}^G(\sigma_L)/E(\theta)$ between 0.75 and 1 or near highest value
- If shocks entirely *specific*, $\hat{S}\left(\sigma_{H}\right) < \hat{S}\left(\sigma_{L}\right)$
 - because lower joint payoff to continuing relationship from adverse impact on capital but no impact on joint payoff to separating
 - bottom row of table indicates $\hat{\theta}^G$ (σ_L) further from the mean than with purely systemic shocks
 - still consistent with model and calculated $C\left(\sigma_L\right)/C\left(\sigma_H\right)$ as long as $\hat{S}\left(\sigma_H\right)/\hat{S}\left(\sigma_L\right) \geq 0.92$
 - 8% reduction in joint gain from continuing relationship over ending it

Specific capital matching specifications

Some evidence of at least some capital specificity

- ullet Same pairs of cutoff values of heta apply as for general capital
- Table below gives single pair that satisfies other conditions
- For change in risk that entirely specific, $\underline{s}\left(\sigma_{H}\right)=\underline{s}\left(\sigma_{L}\right)$
- If some risk systemic, might expect $\underline{s}\left(\sigma_{H}\right)<\underline{s}\left(\sigma_{L}\right)$
 - when higher risk adversely affects payoffs if relationship ends
 - for $C\left(\sigma_{L}\right)/C\left(\sigma_{H}\right)=0.939$, ratio in table is $\underline{s}\left(\sigma_{H}\right)/\underline{s}\left(\sigma_{L}\right)=0.94$
 - consistent with some risk being specific

$$\hat{\theta}^{S}(\sigma_{L}) / E(\theta) \quad \hat{\theta}^{S}(\sigma_{H}) / E(\theta) \quad \frac{\underline{\underline{s}}(\sigma_{H}) C(\sigma_{H})}{\underline{\underline{s}}(\sigma_{L}) C(\sigma_{L})} \quad \underline{\underline{s}}(\sigma_{H}) / \underline{\underline{s}}(\sigma_{L})^{a} \\
0.93 \quad 1.15 \quad 0.97 \quad 0.94$$

Table: Specific capital relational contract values with $E\left(\theta \mid \sigma_{H}\right) = E\left(\theta \mid \sigma_{L}\right)$ matching $E\left(\theta \mid \sigma_{H}'\right) / E\left(\theta \mid \sigma_{L}'\right) = 0.98$ (Note: ^a for $C\left(\sigma_{L}\right) / C\left(\sigma_{H}\right) = 0.939$.)

Comments on calibration results

- Calibration design: to match long-run equilibrium change in capital and productivity
 - no dynamics, so not designed to match adjustment path
 - for that could use probabilistic switching between σ_L and σ_H regimes
 - but tricky with relational contract model
- Capital rigidity: model allows no adjustment of capital in response to shocks
 - either upwards or downwards
 - one-sided irreversibility tricky to handle with relational contracts

Conclusions on relational contract model

Theoretical effects of greater uncertainty

- general investment: risk-neutral parties choose as if risk averse when rely on relational contract
 - so: greater uncertainty reduces general investment for same mean
- specific investment: relaxes relational contract constraint
 - greater uncertainty for same mean may increase specific investment because relaxing constraint becomes more valuable

Calibrated effects of greater uncertainty

with functions and parameters based on Bloom et al (2018):

- general investment: can capture measured falls in capital and productivity without (unappealing) negative first-moment shock under wide variety of conditions
- specific investment: can do likewise but under more restrictive conditions