The Life-Cycle Effects of Pension Reforms: A Structural Approach

Claudio Daminato¹ Mario Padula²

¹Lund University

²Ca' Foscari Venice

► The demographic transition has prompted the **reform of pension systems** in many developed countries

► The demographic transition has prompted the **reform of pension systems** in many developed countries

	Pre-reform	Post-reform
Pension rules	Plan specifies the benefits Defined Benefits (DB)	Plan specifies the contributions Defined Contributions (DC)
Retirement age	Fixed	Flexible

► The demographic transition has prompted the **reform of pension systems** in many developed countries

	Pre-reform	Post-reform		
Pension rules	Plan specifies the benefits Defined Benefits (DB)	Plan specifies the contributions Defined Contributions (DC)		
Retirement age	Fixed	Flexible		

Implemented reforms often imply large decrease in future replacement rates for a given retirement age (e.g., Sweden $\simeq -30\%$, OECD, 2019)

► The demographic transition has prompted the **reform of pension systems** in many developed countries

	Pre-reform	Post-reform
Pension rules	Plan specifies the benefits Defined Benefits (DB)	Plan specifies the contributions Defined Contributions (DC)
Retirement age	Fixed	Flexible

- Implemented reforms often imply large decrease in future replacement rates for a given retirement age (e.g., Sweden $\simeq -30\%$, OECD, 2019)
- High stakes setting:
 - ▶ Pension wealth is one of the largest component of households' wealth
 - Retirement saving key financial decision

Question

What is the effect of these reforms on household finances and welfare?

- Many studies on the offset between social security and private wealth but evidence inconclusive (e.g., Lachowska and Myck, 2018)
- Little evidence on the effects of benefit generosity on portfolio choice and retirement (Blundell et al., 2016)

Question

What is the effect of these reforms on household finances and welfare?

- Many studies on the offset between social security and private wealth but evidence inconclusive (e.g., Lachowska and Myck, 2018)
- Little evidence on the effects of benefit generosity on portfolio choice and retirement (Blundell et al., 2016)

Challenges:

- Limited data on individual public pension wealth and no lung run data on retirement behavioral response
- ▶ Empirical research design: real-world pension reforms often far from ideal experimental setting
- Complex institutions (pension rules, role of financial markets) and dynamic setting (savings, portfolio choice, retirement, bequests,...)

Our answer

- To inform the specification of a life-cycle model, exploit the quasi-experimental variation from actual pension reforms
 - ► Major Italian pension reforms introducing a Notional Defined Contributions (NDC) system and flexible retirement
 - Discontinuous legislation changes across cohorts and sectors of employment: reduced-form effects using a DiD strategy
- ② Develop a rich life-cycle model of saving, portfolio choice and retirement drawing from the reduced-form evidence
- Identify and estimate the structural parameters of the model relying on an indirect inference approach
 - ▶ DiD regressions as auxiliary models
- Onduct counterfactual pension policy experiments and study welfare effects of pension reforms

Contribution

- Structural estimation (Gourinchas and Parker, 2002; Blundell et al., 2016)
 - We are the first to estimate a fully fledged life-cycle model exploiting quasi-experimental variation from pension reforms
 - Model matches well households' pre-reform wealth and financial markets participation and the reduced-form effects of the reforms
- Life-cycle model (Carroll, 1997; French, 2005; French and Jones, 2011; Fagereng et al., 2017)
 - We explicitly introduce the dynamic incentives individuals face in a NDC pension system to postpone retirement
- New insights on the implications of pension reforms (Attanasio and Brugiavini, 2003; Bottazzi et al., 2006; Manoli and Weber, 2016; Lachowska and Myck, 2018)
 - New insights on the offset between pension and private wealth:
 - ▶ 0.65, holding retirement age constant.
 - ▶ 0.55, allowing for retirement age to change.
 - ▶ Pension wealth effects on retirement (benefits $\downarrow 10\%$ \Longrightarrow retire 0.5 later)
 - ▶ Quantify the life-cycle effects of pension reforms: households would be willing to pay 2.4% of annual consumption on average to face the reform 10 years earlier in the life-cycle

Outline

- Empirical evidence on the effects of pension reforms
 - Institutional setting
 - Empirical challenges and research design
 - Data and reduced-form results
- A Life-cycle model (with NDC)
 - Model features and setup
 - Structural estimation
 - Goodness of fit and validation
- Implications
- Conclusion

The institutional setting exploited for model validation

	Pre-reform	Post-reform
Older workers ¹		
Private employees	DB	
Public employees	DB	
Middle-aged workers ²		
Private employees	DB	
Public employees	DB	

 $[\]frac{1}{2} \ge 18$ years of contribution in 1995 $\frac{1}{2} < 18$ years of contribution in 1995

In the post-reform period, **DB less generous for public employees**;

The institutional setting exploited for model validation

	Pre-reform		Post-reform
Older workers ¹ Private employees	DB		DB
Public employees	DB	\Longrightarrow	DB
Middle-aged workers ²			(less generous)
Private employees	DB	\Longrightarrow	Pro-rata model
Public employees	DB	\Longrightarrow	Pro-rata model

- In the post-reform period, DB less generous for public employees;
- Pro-rata: NDC gradually phased-in for middle-aged workers (DB until 1995).

 $[\]geq$ 18 years of contribution in 1995 < 18 years of contribution in 1995

- ▶ Italian reforms brings about arguably **exogenous changes** in eligibility criteria and pension formula, which be used to deliver DiD estimates of *some* meaningful treatment effect parameter
 - Employ DiD approach with older private employees as control group

- ▶ Italian reforms brings about arguably **exogenous changes** in eligibility criteria and pension formula, which be used to deliver DiD estimates of *some* meaningful treatment effect parameter
 - Employ DiD approach with older private employees as control group
- <u>By construction</u>, however, the treated (the **Middle-aged workers**) are on **average younger** than the control (the **Older workers**) and both treated and control are observed over a **specific portion** of their life-cycle.

- ▶ Italian reforms brings about arguably **exogenous changes** in eligibility criteria and pension formula, which be used to deliver DiD estimates of *some* meaningful treatment effect parameter
 - ▶ Employ DiD approach with older private employees as control group
- <u>By construction</u>, however, the treated (the **Middle-aged workers**) are on **average younger** than the control (the **Older workers**) and both treated and control are observed over a **specific portion** of their life-cycle.
- ► Irrespective of the limitations of the quasi-experimental setting, the DiD are not informative about:
 - the offset between pension and private wealth;
 - the long-run behavioural responses;
 - the welfare effects;
 - 4 the consequences of alternative pension policies.

- ▶ Italian reforms brings about arguably **exogenous changes** in eligibility criteria and pension formula, which be used to deliver DiD estimates of *some* meaningful treatment effect parameter
 - Employ DiD approach with older private employees as control group
- <u>By construction</u>, however, the treated (the **Middle-aged workers**) are on **average younger** than the control (the **Older workers**) and both treated and control are observed over a **specific portion** of their life-cycle.
- ► Irrespective of the limitations of the quasi-experimental setting, the DiD are not informative about:
 - the offset between pension and private wealth;
 - 2 the long-run behavioural responses;
 - the welfare effects;
 - 4 the consequences of alternative pension policies.
- ▶ We use DiD estimates to **validate a quantitative model** of savings, portfolio choice and retirement.

Research design

- ▶ Use the quasi-experimental variation from the pension reforms to identify and estimate a structural model which is then used to conduct counterfactual pension policy experiments
 - To assign the treatment status, model households' decisions, pre- and post-reform, allowing for heterogeneous policy variation between cohorts:
 - 2 pension regimes: DB (pre-reform) and pro-rata (post-reform)
 - 2 sectors of employment
 - ▶ 6 year-of-birth cohorts (40-45; 45-50; 50-55; 55-60; 60-65; 65-70)
 - ② Simulate (10,000) households' decisions over the life-cycle:
 - ▶ **Replicate composition** SHIW data (= # households in each group)
 - Cohort-specific timing of reform
 - Construct pre-reform target moments and use the DiD regressions as auxiliary models in an indirect inference estimation approach

The data

- ▶ Bank of Italy's Survey on Household Income and Wealth (SHIW) 1986-2008
- Representative of Italian population of households
- ▶ Bi-annual information on earnings, hours of work, assets and portfolio composition

DiD regression model

$$y_{it} = \delta_0 + \delta_1 POST_t + \delta_2 D_i + \delta_3 * PUB_i + \delta_4 POST_t * PUB_i + \delta_5 D_i * PUB_i + \delta_6 POST_t * D_i * PRIV_i + \delta_7 POST_t * D_i * PUB_i + \varepsilon_{it}$$

DiD regression model

$$y_{it} = \delta_0 + \delta_1 POST_t + \delta_2 D_i + \delta_3 * PUB_i + \delta_4 POST_t * PUB_i + \delta_5 D_i * PUB_i + \delta_6 POST_t * D_i * PRIV_i + \delta_7 POST_t * D_i * PUB_i + \varepsilon_{it}$$

	(1) Log Net Wealth to income ratio
Private employees, middle-aged, after the reform	0.175* (0.090)
Public employees, middle-aged, after the reform	0.324*** (0.091)
Controls	Yes
Cohort dummies	Yes
Time dummies	Yes
Observations	14,738
R-squared	0.106

DiD regression model

$$y_{it} = \delta_0 + \delta_1 POST_t + \delta_2 D_i + \delta_3 * PUB_i + \delta_4 POST_t * PUB_i + \delta_5 D_i * PUB_i + \delta_6 POST_t * D_i * PRIV_i + \delta_7 POST_t * D_i * PUB_i + \varepsilon_{it}$$

	(1) Log Net Wealth to income ratio	(2) Financial market participation
Private employees, middle-aged,	0.175* (0.090)	0.049** (0.024)
Public employees, middle-aged,	0.324***	0.057**
after the reform	(0.091)	(0.028)
Controls	Yes	Yes
Cohort dummies	Yes	Yes
Time dummies	Yes	Yes
Observations	14,738	15,252
R-squared	0.106	0.113

DiD regression model

$$y_{it} = \delta_0 + \delta_1 POST_t + \delta_2 D_i + \delta_3 * PUB_i + \delta_4 POST_t * PUB_i + \delta_5 D_i * PUB_i + \delta_6 POST_t * D_i * PRIV_i + \delta_7 POST_t * D_i * PUB_i + \varepsilon_{it}$$

	(1)	(2)	(3)
	Log Net Wealth	Financial market	Log Hours
	to income ratio	participation	of work
Private employees, middle-aged,	0.175*	0.049**	0.007
fter the reform	(0.090)	(0.024)	(0.009)
Public employees, middle-aged, after the reform	0.324***	0.057**	0.017
	(0.091)	(0.028)	(0.014)
Controls	Yes	Yes	Yes
Cohort dummies	Yes	Yes	Yes
Conort dummies Time dummies	Yes	Yes	Yes
Observations	14,738	15,252	15,218
R-squared	0.106	0.113	0.115

DiD regression model

$$y_{it} = \delta_0 + \delta_1 POST_t + \delta_2 D_i + \delta_3 * PUB_i + \delta_4 POST_t * PUB_i + \delta_5 D_i * PUB_i + \delta_6 POST_t * D_i * PRIV_i + \delta_7 POST_t * D_i * PUB_i + \varepsilon_{it}$$

	(1) Log Net Wealth to income ratio	(2) Financial market participation	(3) Log Hours of work	(4) Expected Age of retirement
Private employees, middle-aged, after the reform	0.175* (0.090)	0.049** (0.024)	0.007 (0.009)	0.736*** (0.276)
Public employees, middle-aged, after the reform	0.324*** (0.091)	0.057** (0.028)	0.017 (0.014)	0.784** (0.349)
Controls	Yes	Yes	Yes	Yes
Cohort dummies	Yes	Yes	Yes	Yes
Time dummies	Yes	Yes	Yes	Yes
Observations	14,738	15,252	15,218	13,125
R-squared	0.106	0.113	0.115	0.136

The model

- The model accomodates the following key features:
 - Saving dynamics
 - @ Portfolio choice: excess-returns from risky assets, tail risk, participation cost ψ
 - Two pension regimes: pre-reform DB and post-reform pro-rata/NDC with illiquid defined contribution wealth
 - Endogenous retirement: under NDC, trade-off between higher PB and disutility from work
 - Uncertainty: labor income, returns from risky assets and mortality
 - ⇒ realistic interplay between SS wealth and households' decisions

Model setup

- ▶ Life-cycle model: yearly frequency between ages 25 and 90
- Rich economic environment:
 - **Assets**: riskless savings, risky assets (share ω_t), illiquid defined contribution wealth
 - ► Labor market: two sectors of employment, sector specific labor income risk and age-varying income growth
 - **Demography**: uncertain length of life, age-varying household composition z_t
 - ▶ Pension rules: carefully replicate institutional setting under DB and pro-rata/NDC

Model setup

- Life-cycle model: yearly frequency between ages 25 and 90
- ► Rich economic environment:
 - **Assets**: riskless savings, risky assets (share ω_t), illiquid defined contribution wealth
 - ► Labor market: two sectors of employment, sector specific labor income risk and age-varying income growth
 - **Demography**: uncertain length of life, age-varying household composition z_t
 - Pension rules: carefully replicate institutional setting under DB and pro-rata/NDC
- Parsimonious parametrization of preferences:
 - ▶ CRRA instantaneous utility, non-separable consumption and leisure $u(C_t, R; z_t)$ (Attanasio et al., 2008)
 - ▶ Standard bequest function $b(A_t)$ (De Nardi, 2004)

Pension rules in the model: DB

▶ Under the **DB** pension regime, **pension benefits** *PB*:

$$PB = \rho NH_N$$

where:

- ho is the accrual rate (sector of employment-specific)
- N are years of contribution
- \triangleright H_N is a measure of average earnings at retirement

Pension rules in the model: DB

▶ Under the **DB** pension regime, **pension benefits** *PB*:

$$PB = \rho NH_N$$

where:

- ho is the accrual rate (sector of employment-specific)
- N are years of contribution
- $ightharpoonup H_N$ is a measure of average earnings at retirement
- Average earnings follow the dynamic equation:

$$H_{t+1} = (1 - R) (h_1 H_t + h_2 Y_{t+1}) + RH_N$$

where R = 1 indicates household is retired

Parametrization (ρ, h_1, h_2) replicates heterogeneity in rules across sectors of employment and pre-/post-reform variation

Pension rules in the model: Pro-rata NDC

▶ Under the **pro-rata regime**, **pension benefits** *PB* given by:

$$PB = \rho N_{1995} H_N + \Gamma_N$$

where:

- $ightharpoonup N_{1995}$: number of years of contribution in 1995 (cohort-specific)
- **Γ**_N: **contributions model component** of PB, defined as:

$$\Gamma_N = \alpha_N \Xi_N$$

- \triangleright Ξ_N : defined contribution wealth accumulated at retirement age
- \triangleright α_N : transformation coefficient, increasing with age of retirement

Pension rules in the model: Pro-rata NDC

▶ Under the **pro-rata regime**, **pension benefits** *PB* given by:

$$PB = \rho N_{1995} H_N + \Gamma_N$$

where:

- $ightharpoonup N_{1995}$: number of years of contribution in 1995 (cohort-specific)
- $ightharpoonup \Gamma_N$: **contributions model component** of PB, defined as:

$$\Gamma_N = \alpha_N \Xi_N$$

- \triangleright Ξ_N : defined contribution wealth accumulated at retirement age
- \triangleright α_N : transformation coefficient, increasing with age of retirement
- ▶ **Defined contribution wealth** evolves according to:

$$\Xi_{t+1} = (1-R)\left(\overline{G}_t\Xi_t + \tau Y_{t+1}\right) + R\Xi_N$$

where:

- ightharpoonup au: non-contingent contribution rate to the retirement account $(\frac{\tau}{3}$ paid by the worker; $\frac{2\tau}{3}$ employer defined contributions)
- \overline{G}_t : return factor equal to the 5-years moving average of GPD growth

Household's problem and solution

$$\max \mathbb{E}_t \left\{ \sum_{s=t}^T \beta^{s-t} \left[q_s u(C_s, R; z_s) + (1 - q_s) b(A_s) \right] \right\}$$

- 3 choice variables:
 - ► Consumption *C*
 - ightharpoonup Portfolio share of risky assets ω_t
 - Retirement age (under NDC, between ages 57 and 65)
- 7 state variables:
 - Age in years t
 - Retirement status R
 - Discretionary wealth A
 - Labour earnings Y

- Average earnings H
- ► Defined contribution wealth Ξ
- Defined contribution benefits Γ
- Solution based on a modification of Endogenous Grid Method and Upper Envelope (Iskhakov et al., 2017; Druedahl and Jørgensen, 2017)

Identification and estimation

Adopt a two-steps approach (Gourinchas and Parker, 2002):

- Exogenous parameters estimated directly from the data (e.g., parameters income process, demographics, pension parameters)
- 2 7 parameters are jointly estimated exploiting the indirect inference approach:

$$oldsymbol{\kappa} = [oldsymbol{eta}, \gamma, \widetilde{ heta}, \psi, oldsymbol{p_{tail}}, \widetilde{\phi_1}, \phi_2]$$

Indirect inference estimator:

$$\widehat{\kappa} = \arg\min_{\kappa} \left(\widehat{\lambda^d} - \widehat{\lambda^s}(\kappa) \right)' W \left(\widehat{\lambda^d} - \widehat{\lambda^s}(\kappa) \right)$$

- $\hat{\lambda}^d$: vector of auxiliary moments/parameters estimated in the data
- $\hat{\lambda}^s(\kappa)$: model moments/parameters obtained for a given set of κ
- ▶ *W*: inverse of the diagonal term of the bootstrapped variance matrix

Identification: sensitivity

Figure: Absolute value of the scaled sensitivity matrix as defined in Andrews et al. (2017). The sensitivity measure has been rescaled to indicate the effect of a 1% increase in the moments on the parameters.

17 / 31

Second-step estimation results

Table 2. Estimated structural parameters

Parameter		Value	Std. error
Time discount factor	β	0.9919	(0.0002)
Coefficient of relative risk aversion	γ	1.6103	(0.0091)
Financial markets participation cost	ψ	766.13	(1.7627)
Tail event probability	p_{tail}	0.0205	(0.0001)
Utility cost of work	$\widetilde{\widetilde{\phi}_1}$	0.1417	(0.0034)
Other cost of work	ϕ_2	0.0006	(0.0001)
Marginal propensity to bequeath	$egin{array}{c} \phi_2 \ ilde{ heta} \end{array}$	0.8761	(0.0015)

Goodness of fit: pre-reform median wealth-to-income ratio

(B) Wealth-to-income ratio, public employees

Goodness of fit: financial markets participation

(c) Participation, private employees

(D) Participation, public employees

Goodness of fit: reduced form effects of the reform

DiD estimates for the effects of the reform

	Sector	Model	Data	[95% CI Diff.]	
(Log) wealth	Private	0.218*	0.199	-0.217	0.178
	Public	0.344*	0.352	-0.166	0.182
Participation	Private	0.047*	0.050	-0.036	0.044
(<i>Marginal effects</i>)	Public	0.044*	0.047	-0.040	0.045

 $\it Notes: * indicates simulated moment falls within the 95\% confidence interval of the empirical moment.$

Model validation: untargeted post-reform wealth of middle-aged workers

Model validation: untargeted expected retirement and model-predicted retirement age

		Data	Model
		Expected	
Sec-	Private	62.35	62.26
\mathbf{tor}	Public	62.25	62.29
	1955-60	62.83	62.21
Cohort	1960-65	61.95	62.25
	1965-70	62.17	62.37
All		62.31	62.27

Notes: Comparison between mean expected retirement age in the SHIW data and simulated by the economic model for middle-aged workers.

The distributional effects of the reforms on pension wealth

Implications I: Displacement effect

Q1: How much do public pensions crowd-out private savings?

- ► Simulate **long-run** behavior (age 60) using the model:
 - **1** Actual behavior in the *presence* of the reform:
 - Counterfactual behavior absent the reform:
 - ightharpoonup Obtain $A_{i,60}^{C}$ and $PB_{i,60}^{C}$
 - $\Longrightarrow \Delta A_{i,60}$: individual level effect of the reforms on lifetime savings
- Estimate the following equation on simulated data:

$$\Delta A_{i,60} = \delta_0^A + \delta_1^A \Delta P B_{i,60} + \epsilon_{i,60}$$

Repeat counterfactual simulation shutting-off retirement response

Model-predicted displacement effect

Q1: How much do public pensions crowd-out private savings?

(A) By timing of reform, fixed labor supply

(B) The role of flexible retirement

Implications II: Retirement decision response

Q2: How does benefit generosity affect retirement decisions?

FIGURE 3. The extent of insurance through the retirement age. Each point corresponds to the model-predicted response of retirement to changes in pension wealth, in each decile of reform-induced variation in pension benefits. The response is expressed as the difference between the simulated retirement age under the post-reform NDC scheme and that under the pre-reform defined benefit regime.

Implications III: Welfare effects

Q3: What are the welfare effects of the reforms?

- Cohort-sector of employment groups hit differently
 - ⇒ Focus on distributional welfare effects
- Compute model-predicted lifetime utility from the cohort-specific age at the time of the reform (t_{1995}) :
 - Actual lifetime utility in the presence of the reform
 - Counterfactual lifetime utility in the absence of the reform
- Welfare metric: **consumption-equivalent** ζ_i (Low et al., 2010)

Implications III: Life-cycle welfare effects

Q3: What are the welfare effects of the reforms?

Ex-ante pension policy experiments

- Two pension policy experiments:
 - ↑ in the early retirement age from 57 to 62
 - \bigcirc 10% \downarrow in benefit generosity, for a given retirement age

Figure: Model-predicted effects on retirement age. Each bar corresponds to the simulated effect in each wealth quintile at the time of the reform. Baseline regime: Italian NDC 2013 rules

Ex-ante pension policy experiments

- ► Two pension policy experiments:
 - \bullet in the early retirement age from 57 to 62
 - \bigcirc 10% \downarrow in benefit generosity, for a given retirement age

Figure: Model-predicted effects on consumption. Each bar corresponds to the simulated effect in each wealth quintile at the time of the reform. Baseline regime: Italian NDC 2013 rules

Robustness checks

• We maintain the baseline model specification (and therefore adopt the same model solution and simulation), but **modify certain aspects** of the structural estimation approach;

Robustness checks

- We maintain the baseline model specification (and therefore adopt the same model solution and simulation), but modify certain aspects of the structural estimation approach;
- We modify the structural model specification (which requires rewriting both model solution and simulation) while estimating the model using indirect inference and targeting the baseline set of auxiliary parameters/moments.

Robustness checks

- We maintain the baseline model specification (and therefore adopt the same model solution and simulation), but modify certain aspects of the structural estimation approach;
- We modify the structural model specification (which requires rewriting both model solution and simulation) while estimating the model using indirect inference and targeting the baseline set of auxiliary parameters/moments.

Bottom line: the results are robust.

Conclusions

- We provide and estimate a dynamic life-cycle model of savings, portfolio choice and retirement using the reduced form effects of a wave of major pension reforms carried out in Italy in the nineties.
- ▶ The model **fits** the data **well**, both the pre-reform wealth and participation profiles and the effects of pension reforms, predicts **substantial** social security wealth effects on retirement, and higlights the role of the **retirement choice**.
- Further, our framework allows to quantify **life-cycle effects** of the pension reforms, with older workers experiencing larger welfare losses, for any level of variation in benefit generosity.
- ▶ We use the estimated model to illustrate the substantially different consequences of **alternative pension policies** in terms of consumption and retirement wealth effects, as well as "life-cycle" welfare effects.

Supplementary material

Pre-reform pension regime: Defined benefits system

▶ Under the pre-reform defined benefits (DB) scheme, pension benefits *PB*:

$$PB = \rho NH_N$$

where:

- $\triangleright \rho$ is the accrual rate
- N are years of contribution
- $ightharpoonup H_N$ is a measure of average earnings at retirement.

	Private employees	Public employees
$\overline{\rho}$	0.02	0.023
H_N	Mean last 5 earnings	Last earning

- ► After the reform, DB scheme:
 - ► Unaltered for older private employees
 - Modified for older public employees ($\rho = 0.02$) and H_N the mean of last 10 earnings

Post-reform pension regime: Pro-rata model

- ▶ Reform phased-in a Notional Defined Contribution (NDC) scheme for middle-aged workers:
 - ▶ DB until 1995
 - ▶ NDC after 1995: when retiring at age N, NDC component of pension benefits Γ_N :

$$\Gamma_N = \alpha_N \Xi_N$$

where:

- $ightharpoonup \alpha_N$: transformation coefficient, increasing with N
- $ightharpoonup \Xi_N$: amount of defined contribution wealth at retirement

$$\Xi_N = \sum_{t=1}^N au Y_t \prod_{j=t+1}^{N-1} (1+\overline{G}_j)$$

- \triangleright τ : contribution rate
- $ightharpoonup \overline{G}_t$: five-years moving average of the GPD growth factor
- ▶ NDC gradually phased-in based on the number of years of contribution in 1995.

Household's portfolio returns

- ▶ Total discretionary wealth A_t composed of riskless B_t (share $1 \omega_t$) and a risky S_t assets (share ω_t):
 - ► The return from a household's portfolio:

$$r_{t+1}^p = r_f + \omega_t(\mu_S + \eta_{t+1})$$

- Riskless return: r_f
- ightharpoonup Risky assets returns: $r_f + \mu_S + \eta_{t+1}$, with $\mu_S > 0$ and η_{t+1} normal $iid \mathcal{N}(0, \sigma_S^2)$
- ▶ Tail risk in the risky assets return distribution: r_{tail} with prob. p_{tail} (Fagereng et al., 2017)
- \blacktriangleright Per-period fixed cost to hold the risky assets: ψ (e.g., Vissing-Jorgensen, 2004)

Labor income process

ightharpoonup During the working life, households receive gross labor earnings Y_t :

$$Y_{t+1} = g_t Y_t v_{t+1}$$

where:

- \triangleright v_t are permanent i.i.d. shocks to earnings with constant variances
- \triangleright g_t is the age-varying earnings growth factor
- ▶ This is a standard permanent-transitory type earnings process in which the variance of the transitory shocks to zero (as in, e.g., Scholz, 2006)
- ► Shock variances and age-varying earnings growth allowed to vary with the sector of employment.

Defined contribution benefits

Between ages 56 and 64, we can write the evolution of defined contribution benefits as:

$$\Gamma_{t+1} = \left(\frac{\overline{G}_t \Gamma_t}{\alpha_t} + \tau Y_{t+1}\right) \alpha_{t+1}$$

Back

Preferences

▶ Intertemporally separable utility, instantaneous utility (Attanasio et al., 2008):

$$u(C_t,R;z_t)=q(z_t)rac{\left(rac{C_t}{q(z_t)}
ight)^{1-\gamma}}{1-\gamma}e^{\phi_1(1-R)}-\phi_2(1-R)$$

where:

- $ightharpoonup C_t$: consumption
- $ightharpoonup q(z_t)$: function of demographics (nr. of adults and children)
- R: indicator for retirement status
- Bequests valued as in De Nardi (2004):

$$b(A_t) = \theta \frac{(A_t + k)^{1-\gamma}}{1-\gamma}$$

 $ightharpoonup A_t$: end-of-period discretionary wealth

Other exogenous parameters

Parameter		Value		
Risk free rate	r _f	1.0302		
Excess risky assets return	μ_{S}	0.0194		
Std. deviation of risky assets returns	σ_{S}	0.2620		
Return in the tail event	r_{tail}	-0.50		
Retirement age				
	Before the reform (all)	60		
	After the reform (older)	61		
Evolution average earnings	h_2			
	Before the reform			
	Private-employees	0.2		
	Public-employees	1.0		
	After the reform			
	Private-employees	0.1		
	Public-employees	0.1		
GDP growth rate	g	0.015		
Accrual rate	ρ			
	Private-employees	0.02		
	Public-employees	0.023		
Contribution rate	au	0.33		

Note: r_f and μ_S are computed as described in the main text, g is the average real GDP growth rate from Istat National Account data. The after-reform retirement age apply to older workers only. For each group and pension regime, h_1 is obtained as $1-h_2$.

Long-run vs. Short run displacement

Welfare effects by cohort

Table A9. Welfare effects of the pension reforms by cohort

	Cohort	Private	Public	All
Older	1940-1945	-0.0240	-0.0979	-0.0567
	1945-1950	-0.0151	-0.0748	-0.0423
	1950 - 1955	-0.0126	-0.0610	-0.0351
Middle-aged	1955-1960	0.0021	-0.0346	-0.0138
	1960-1965	0.0102	-0.0201	0.0004
	1965-1970	0.0186	-0.0052	0.0127
All		-0.0035	-0.0563	-0.0250

Notes: The Table reports the average simulated consumption equivalent welfare effect of the reform $\zeta,$ by group.