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Nonlinear/Non-Gaussian Earnings Dynamics

* Big data and new methods helped us to reveal new insights for income dynamics.
Guvenen et al. (2019); Arellano et al. (2017); De Nardi et al. (2019); Guvenen et al. (2014); Busch et al. (2015), ...

¢ Non-Gaussian features of income shocks

¢ [eft skewness and excess kurtosis
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Nonlinear/Non-Gaussian Earnings Dynamics

* Big data and new methods helped us to reveal new insights for income dynamics.
Guvenen et al. (2019); Arellano et al. (2017); De Nardi et al. (2019); Guvenen et al. (2014); Busch et al. (2015), ...

¢ Non-Gaussian features of income shocks

¢ [eft skewness and excess kurtosis

* Asymmetric/nonlinear mean reversion: Persistence differ by
* positive vs negative changes; low vs high income workers; age

 Current shocks change persistence of past ones.
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Open Questions

* Focus has been on annual male earnings (before tax-before transfer) dynamics.
Except for recent work by De Nardi et al. (2019); Busch et al. (2019).

e What’s driving asymmetric mean reversion and non-Gaussian features of earnings growth?

* Wages vs Hours?
* How much insurance against large earnings losses/gains from spouse and government?

¢ Do non-Gaussian features (skewness/kurtosis) extend to

* household (husband+wife) earnings?

* and to household disposable income?

* This paper: Use the Norwegian registry data to study these questions.
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What Do We Do

Use the Norwegian registry data to study above questions.
1. Show that patterns for annual earnings risk are remarkably similar to the US.

2. Study the role of wages vs hours in non-Gaussian properties of earnings changes.

e Decompose earnings changes into hours and hourly wage growth.

* Do wage and hours growth display non-Gaussian features?

3. Document the insurance against tail shocks of earnings through spouse’s income and public

insurance.

* Distribution of after after-tax and transfer household income growth.
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Data and Empirical Methodology

Norwegian Registry Data



Norwegian Registry Data

* Administrative data covering the whole Norwegian population.

* A combination of administrative registers such as annual tax records and employment register

* High quality because
 Third-party reported: employers, banks, brokers, etc.

e No attrition (unless someone emigrates).

* Family identifiers from the population register.

* includes cohabitant couples.
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Norwegian Registry Data: Base Sample

e Panel data between 1998 and 2014.

* Income data goes back to 1993 but not hours.

» Today: focus on males between ages 25 and 60.

* We do the same analysis with women.
* We use ~20M year/individual observations in our analysis

* Labor Earnings for wage and salary workers including bonuses and other remunerations.

* Business income for self-employed workers: no hours data.
* Deflate all values with the 2000 CPI.

e 2 measures of hours worked.
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Hours Data: Employment Register

* Hours reported by employers between 2003 and 2014

* On contractual working hours per week, employment duration and sector
* Only for wage and salary workers w/ > 4 hours/week contracts

e Cover 77% of population between 25 and 60.
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Hours Data: Employment Register

* Hours reported by employers between 2003 and 2014

* On contractual working hours per week, employment duration and sector
* Only for wage and salary workers w/ > 4 hours/week contracts

e Cover 77% of population between 25 and 60.

* Shortcomings of hours measure in the employment register:

e overtime hours are not included,
* fail to report employment spells correctly or update hour changes,

* employers with irregular employments are more prone.
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AKU: Panel Labor Force Survey

 Used in official unemployment estimates.

For ~3200 individuals since 1972.

* Surveyed actual hours worked last week in 8 quarters in a row.

e compute annual hours as haky = Z?:1 13 = hy.

e Individuals in the AKU are linked to their administrative register data.

* Additional information from register data: part time, sick days, unemployment, etc.

e Impute a better hours measure in administrative register data.
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Imputation of Hours in the Register Data

haku = f(XReg) + €

* Estimate a model of actual hours measure in the AKU using covariates from the register data.

* The model includes:
* Basic demographics: Age, education, gender, marriage
* Contractual hours measure in the register data and its lagged value
e Number of unemployed, sick and parental days, and their lags
* Part time vs full time and public vs private, and their lags

 Past and recent earnings

* Tried different ML algorithms—regression tree (Quinlan ef al. (1992)) performed best.

» Sample size for training the model is not very big.

Use f(Xgeg) to impute hours for everyone in the register.
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Imputation of Hours in the Register Data

* Hours changes in register data are
smaller than those from AKU.

e Imputation is doing a fairly good job in
replicating the AKU measure.

* Best predictors are register hours,
sick/unemployment days.

Yt — Y1, Log Growth of Average

-0.3
.7 =0~ Actual Annual Hours AKU Men Women
e
04F 7 =0 Imputed Annual Hours i
e =¥ Employment Register Annual Hours Depth 3 4 3 4
03 04 03 02 01 0 o1 o2 o3 Train R? 257 26.8 | 48.8 49.7

Y+ — Yi—1, Log Growth of Average Annual Earnings Test R2 229 224 | 487 484

9/35



Data and Empirical Methodology

Methodology



Sample Selection and Construction of Recent Earnings

* Revolving panel of 25-60 year old workers with a reasonably strong labor market attachment.

* In year ¢ select individuals participating in the labor market:

 YI > YMn (5% of median earnings) in t — 1 and for 2 more years between ¢ — 2 and t — 5.

* Y;_1: Average recent earnings (RE) between { — 1 and ¢ — 5 net of age effects.
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A Graphical Construct

 Divide the population into 3 age groups in t — 1: 25-34, 35-44, 45-54.
* Within each age group rank individuals according to Y;_1 into 10 RE deciles.

* Within each age group, against each quantile of Y:_1 (RE) on the x-axis:

* plot moments from conditional distribution of earnings growth F (yp,k — Vi |7,,1 )

Condition on Compute statistics for

\ A Yt+k — Yt

A

t—5 t—1 t t+k
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Changes in Hours vs Wages

Earnings Growth: Hours vs Wage



Annual Hours vs Hourly Wage

* Decompose changes in earnings to hourly wage or hours components.

* Group workers w.r.t. annual wage growth between f — 1 and t, Ae; 1 into 20 equally sized bins.

* Conditional on age (young vs prime age) and past 5-year income (RE) deciles 7;_1.

e a group of prime age men
* with median past income/recent earnings (RE)
* who experience 25 log points decline in earnings between ¢ + 1 and t.

* How much hourly wage and hours growth each group experience?
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Hours vs Wage: Middle 4 RE Decile
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Hours vs Wage: Bottom vs Top RE Deciles

Y41 — Yt, Log Change of Avg.
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* For bottom RE group hours growth plays a more important role.

* For higher RE groups wage changes are main drivers of earnings growth.
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Changes in Hours vs Wages

Asymmetric Mean Reversion



Asymmetric Mean Reversion: Dynamics of Earnings
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Asymmetric Mean Reversion: Hours vs Wages

Wage Growth

o
wn

—0—Bottom RE Decile
—o—Median RE Decile
—¥—Top RE Decile

Yr+5 — Y, Log Change of Avg. Wage

o

wn

\
\

0
Yr+1 — Yt, Log Change of Avg. Wage

0.5

Y5 — Yi, Log Change of Avg. Hour

Hours Change
0.2
0.15F
0.1F
0.05 F
0 e m T ___
-0.05 7 ’
.
-
0.1F L
P —o—Bottom RE Decile
015F 4 ‘ —o—Median RE Decile
L —v—Top RE Decile

.2 -
02 015 -01 005 0 005 01 015
Ye+1 — Y, Log Change of Avg. Hour

0.2

Low-Earners

* negative: transitory hours declines

* positive: persist. hours&wage inc.

High-Earners

negative: persistent wage declines

positive: transitory wage rises.
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Non-Gaussian Earnings Growth
Distribution

Norway vs US



Histogram of y;. — y;
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® Peaky center, narrow shoulders, long tails = Excess kurtosis.

® Left tail longer than right tail = Left (Negative) Skewness.
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Standard Deviation of y;.5 — y;
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® Changes are smaller in Norway.

* RE and age variation are very similar in both countries.
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Skewness of y;,5 — y;

Norway

Skewness of y15 — Yt
Skewness of y;15 —
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® In both economies, distributions are similarly left skewed.

® Left skewness increases by RE and age in a similar fashion.
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Kurtosis of y;.5 — y;

[
=
T

L

I
[
T

L

3
T
L

Kurtosis of y15 — yt
> =

Kurtosis of g5 — u

-0~ 25-35
6F -0-2534
-0 36-45 03544
“V- 46-55 - 45-54
P . . . ; 2
2 4 6 8 10 20 40 60 80 100
Deciles of Recent Earnings (RE) Distribution Percentiles of Recent Earnings (RE) Distribution

® S-year earnings distribution exhibits higher excess kurtosis in Norway.

® Excess kurtosis follows hump-shaped pattern over RE in both.
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Non-Gaussian Earnings Growth
Distribution

Distribution of Hours vs Wage Growth



Distribution of Hours vs Wage Growth

* Does hourly wage and annual hours growth distribution exhibit non-Gaussian/nonlinear
features?

* How much of the left skewness and excess kurtosis of annual earnings growth are driven by
changes in hourly wages vs hours?

|Og Ctik — |Og et = Aet’k = Aht,k + AWt,k

* Skewness Decomposition

O-AWLK O-Ahryk
Sherx = ( oA X SAwy T o X SAh; ;T CO-SAw, 4, ANy x
€tk €tk

* Kurtosis Decomposition

O-AWU( O-Ahtvk
Khejx = (O_A X KAwy i + o X KAhy k + CO-KAw, 4, Ahy
€tk €tk
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Variance of y;,5 — y; for Prime Age Male

Variance Decomposition
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® Hourly wage is more volatile than hours especially above the median.

® Similar to the PSID (Heathcote et al. (2014)).
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Skewness of y;.5 — y; for Prime Age Male

Skewness Decomposition
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® Both hours and wage growth are left skewed.
® Wage growth and more importantly co-skewness are driving the left skewness of earnings growth.
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Kurtosis of y;,5 — y; for Prime Age Male

Kurtosis Decomposition
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® Wage and hours growth are both leptokurtic (especially hours growth).

® Excess kurtosis due to hourly wage dominates the hours.
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Non-Gaussian Earnings Growth
Distribution

Stayers vs. Switchers



Distribution of Hours vs Wage Growth

* One of the key events leading to both large positive and negative earnings shocks is a change
of employer (e.g., EE or EUE).

* How do the earnings shock distributions of job-stayers and job-switchers differ?

* Define a job-stayer as an individual who stays with the same employer in year t or t+1.

* Everybody else are switchers.

* Quantify the role of stayers and switchers in higher-order moments of earnings growth. For
example, for skewness:

1
skew (Ay) = ——— /{ oy, ()P OF () +
ieStay

—E(Ay))3dF (A
(5t (Ag))? (Ay))” dF (Ay)

- (Ay;
(std (Ay))3 /{ieSwitch} yi

skewness due to Stayers skewness due to Switchers
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Variance: Stayers vs. Switchers

Variance Decomposition
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® As expected switchers experience a more volatile wage growth.

® Switcher contribution to overall volatility is low because there are fewer of them.
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Skewness: Stayers vs Switchers

Variance Decomposition
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® Stayer face a more left skewed dist?n because of sick days (substitute for unemp).

® Skewness of earnings driven mainly by stayers.
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Kurtosis: Stayers vs. Switchers

. oy
Variance Decomposition
(=}
< 7 o
S| —e— Al
—&— Switchers
——A—— Stayers
@ 3
@
2
@ E
@ ©
So o
5 58 A
X .2
@
S
€
2
o o
—&— Switchers
—A— Stayers
o4
T 5 5 i 5 & 7 8 & B e P S Sy ey
. N — 1 2 3 5 6 7 8 9 10
Deciles of Recent Earnings Distribution Deciles of Recent Eamings Distribution

® Earnings growth for stayers is more leptokurtic (similar to the US).
® Excess kurtosis due to mainly for stayers.
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Household Income Dynamics

Distribution of Household Income Growth



Nature of Idiosyncratic Income Risk

* Do non-Gaussian features of annual earnings growth distribution extend to

* household (husband+wife) earnings?

* After tax/after transfer disposable household income?

* For some questions nature of household income risk—before and after tax—is key.

* Plot their distributions and higher-order moments.
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Variance of 5-Year Income Growth, y;,5 — y;
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Skewness of 5-Year Income Growth, y;,5 — y;
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Kurtosis of 5-Year Income Growth, y;,5 — y;
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Summary of Findings

1. Large earnings swings: driven equally by wages and hours.

e Wage rates more important for for higher RE.

* Smaller earnings changes driven by wages.
2. Nonlinear mean reversion in earnings is driven by the dynamics of hours.

3. Both wages and hours contribute to negative skewness and high kurtosis of earnings changes
but hour-wage interactions most important.

4. Spousal inc. reduces the variance and skewness of disposable income growth

* mainly through second earner effect (no behavior change)

5. Taxes/transfers provide insurance against tail shocks—more for low RE groups.
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