# Debt Overhang, Rollover Risk, and Corporate Investment: Evidence from the European Crisis<sup>†</sup>

Şebnem Kalemli-Özcan UMD, NBER & CEPR

Luc Laeven ECB & CEPR David Moreno Banco Central de Chile

**Teaching slides** 

<sup>&</sup>lt;sup>†</sup>The views expressed here are solely those of the authors and do not necessarily reflect the views of the European Central Bank or the Banco Central de Chile.

# **Corporate debt and investment**

(percent of GDP, indices 1999q1=100)



Sources: Bank for International Settlements, Bureau of Economic Analysis, and Eurostat

# Is sluggish investment due to corporate indebtedness?

#### Do high levels of corporate debt discourage investment and if so how?

- 1 We consider:
  - Corporate indebtedness → debt overhang
  - Maturity structure → rollover risk
- **2 Identification challenge:** Aggregate demand shocks and bank weakness affect firm investment and correlate with firm indebtedness
- 3 Big data approach to overcome the challenge:
  - We use matched firm-bank data based on banking relationships in 8 euro-area countries (over 2 million observations)
  - We measure firm and bank balance sheet deterioration and quantify their separate effects on firm investment
  - Use 4-digit-sector-country-year fixed effects to control for aggregate demand shocks

## Debt overhang and rollover risk

- **Debt overhang**: High indebtedness curtails new investments because its benefits would accrue to debtholders rather than shareholders (Myers, 1977)
  - → A debt burden large enough to prevent a firm from taking additional debt
  - → It may slow investment via deleveraging and low net worth
  - → measured by debt/assets
- Short-term debt increases rollover risk during crises, as collateral values drop and lenders do not renew credit lines (Diamond, 1991)
  - → measured with residual short-term debt/total assets

#### **Related literature**

- Macroeconomic models with corporate-debt overhang:
  - Lamont (1995); Whited (1992); Occhino and Pescatori (2010)
- Empirical debt-overhang literature:
  - Focus on banks, sovereigns and households:
    - Philippon and Schnabl (2013); Becker and Ivashina (2014); Melzer (2012)
  - Lack of corporate sector focus due to data limitations. With listed US firms:
    - Bond and Meghir (1994); Hennessy (2004); Hennessy, Levy, and Whited (2007)

## Debt overhang and rollover risk: relation to other channels

- Literature on low investment blends several channels and cannot explain firm heterogeneity
  - Sovereign-bank doom loop:
    - Sovereign stress imposes losses on banks with sovereign exposures
    - Deteriorates banks' funding conditions
    - Hence reduces credit supply
    - $\rightarrow$  affects all firms
  - Low aggregate demand and high uncertainty
    - $\rightarrow$  affects all firms
- In reality:
  - Both channels might affect more high debt-overhang firms
  - These may not choose to invest even if its bank is strong and face high demand

## Our contribution: an overlooked channel

- 1 Focus on identifying corporate indebtedness for investment slump, conditional on other channels
- Pan-European setting where we quantify the effect for real outcomes of heterogeneity at three levels : sovereigns, banks, and firms
- 3 Unique hand-matched firm-bank-sovereign data from 8 countries, including <u>SMEs</u>
  - Different from literature, which focuses on listed firms (1% of our sample)
  - Small firms comprise a large fraction of economic activity in Europe (70 percent)
  - Unable to switch funding sources
  - Debt-overhang presumably larger in small firms, given higher information asymmetry and riskiness

# **Findings**

- Low firm investment linked to high leverage, elevated debt service, and relation to a weak bank
- Firms with a higher long-term share of debt invest more, suggesting these face lower rollover risk
- The direct negative effect of weak banks on the average firm's investment disappears once demand shocks are controlled for
  - → Differential effects via firm indebtedness remain
- Debt overhang and rollover risk channels explain ~20 percent of the cumulative decline in aggregate private sector investment over the crisis period

### Firm-level financial data

- ORBIS database provided by Bureau van Dijk (BvD)
  - → Harmonised worldwide (+200 million firms, from +200 countries)
  - ightarrow Focus on AMADEUS, the European subset of ORBIS starting 1999
  - ⇒ For more details, see Kalemli-Özcan et al. (2015)
- Balance sheets and income statements at 4-digit NACE industry classification
- Collected from official business registers, annual reports, and newswires
- Private and public firms (advantage over Compustat/Worldscope)
- Mimics official size distribution:
  - → Firms under 250 employees account for 70 per cent of the economic activity in Europe

# Matching firm to their banks, and banks' to their sovereigns

- We use **KOMPASS** database to match bank and firms
  - → Firms report their main bankers, and also secondary banker in most cases
- Then match to **Bankscope** for banks' balance sheets
- We match both the direct relationship bank, and its parent bank
  - to capture internal capital market effects
- For most observations, bank and firm sovereign are identical
  - except in Eastern Europe, which we exclude in our sample to keep monetary policy constant

#### Measurement

- Net investment/capital =  $\Delta K_t/K_{t-1}$ , where  $K_t$  are fixed assets net of depreciation
- **High leverage**: Avg. Debt/Assets between 2000-07  $> p_{75}$  (Total, LT, and ST)
- Post: binary variable 0 until 2008, 1 afterwards
- **Periphery**: binary variable **0** centre / **1** peripheral economies
- Debt-coverage ratio: Interest payments/EBITDA
- Cash flow ratio: Cash flow/Assets
- Firm growth opportunities  $\approx$  Sales growth
- **Firm size** ≈ log (Real Assets)
- Weak bank: Sovereign bondholdings/total bank assets

# **Benchmark regressions**

# **Identifying assumptions I**

 Parallel trends: Investment trends differ less pre-crisis among high and low leverage firms when adding firm-level controls.



Figure: Evolution of net investment rates of high-leverage vs low-leverage firms. This figure illustrates results of the estimation of the model given in equation (1). 'Baseline' model features firm-level FE; 'Full FEs' model adds country-sector-year FE; and 'Controls + full FEs' model adds lagged firm-level control variables. Dashed lines corresponds to the confidence intervals at 5% significance.

# **Identifying assumptions II**

• **Parallel trends**: Investment trends do not differ less pre-crisis among high and low leverage firms in each region of the euro area, when adding firm-level controls.



Figure: Evolution of net investment rates of high-leverage vs low-leverage firms. Total figure uses a double interaction model; Core and Periphery figures use coefficients estimated using a triple interaction model with a Periphery binary variable. Dashed lines corresponds to the confidence intervals at 5% significance.

## **Identifying assumptions III**

- Firms face granular demand shocks at the 4-digit sector level regardless of indebtedness
  - Valid strategy when remaining variation in *ex post* firm-specific demand conditions does not vary systematically with *ex ante* debt level and maturity of the firm
  - Invalid if firms enduring idiosyncratic negative demand shocks, operate in different
    4-digit industries, and accumulated more long than short-term debt during a boom

# **Extended benchmark regressions**

$$\begin{split} \left(\frac{\text{Investment}}{\text{Capital}}\right)_{i,s,c,t} = & \beta_1 \; \text{POST}_t \times \text{Periphery}_c \times \text{High Leverage}_{i,s,c} + \\ & \beta_2 \; \text{POST}_t \times \text{High Leverage}_{i,s,c} + \\ & \gamma' \; \text{Controls}_{i,s,c,t-1} + \alpha_i + \alpha_b + \delta_{s,c,t} + \varepsilon_{i,s,c,t} \end{split}$$

# Benchmark results with total firm leverage

Dependent variable: (Net investment/Capital) $_{i,s,c,t}$ 

|                                                          | (1)       | (2)       | (3)                             | (4)       |
|----------------------------------------------------------|-----------|-----------|---------------------------------|-----------|
| $Post_t \times Periphery_c \times High Leverage_{i,s,c}$ |           |           | -0,029***                       |           |
| $Post_{t} 	imes Periphery_{c}$                           |           |           | (0,003)<br>-0,037***<br>(0,002) | (0,003)   |
| $Post_t 	imes High\ Leverage_{i,s,c}$                    | -0,033*** |           |                                 |           |
|                                                          | (0,001)   | (0,002)   | (0,002)                         | (0,002)   |
| Total effect: Post <sub>t</sub>                          | -0,053*** | -0,028*** | -0,085***                       | -0,039*** |
|                                                          | (0,001)   | (0,002)   | (0,001)                         | (0,002)   |
| Total effect: Periphery <sub>c</sub>                     |           |           | -0,066***                       | -0,022*** |
|                                                          |           |           | (0,002)                         | (0,003)   |
| Total effect: High Leverage <sub>i.s.c</sub>             | -0,033*** | -0,028*** | -0,046***                       | -0,039*** |
| 7-7-                                                     | (0,001)   | (0,002)   | (0,002)                         | (0,002)   |
| Firm FE                                                  | Yes       | Yes       | Yes                             | Yes       |
| Country-sector-year FE                                   | No        | Yes       | No                              | Yes       |
| Bank FE                                                  | No        | Yes       | No                              | Yes       |
| Obs.                                                     | 2,431,265 | 2,426,548 | 2,431,265                       | 2,426,548 |
| R <sup>2</sup>                                           | 0.17      | 0.18      | 0.17                            | 0.18      |

## **Role of weak banks**

Dependent variable: (Net investment/Capital) $_{i,s,c,t}$ 

|                                                        | (1)                              | (2)                         | (3)                              | (4)                             |
|--------------------------------------------------------|----------------------------------|-----------------------------|----------------------------------|---------------------------------|
| $Post_t 	imes Periphery_c 	imes High Leverage_{i,s,c}$ |                                  |                             | -0,034***                        |                                 |
| $Post_t \times Periphery_c$                            |                                  |                             | (0,005)<br>-0,041 ***<br>(0,004) | (0,006)                         |
| $Post_{t} 	imes High Leverage_{i,s,c}$                 | -0,032***                        |                             | -0,008*                          | -0,010 **                       |
| Weak bank $_{i,t-1}$                                   | (0,003)<br>-0,212 ***<br>(0,022) | (0,003)<br>0,037<br>(0,030) | (0,004)<br>-0,241 ***<br>(0,022) | (0,005)<br>0,038<br>(0,030)     |
| Total effect: Post <sub>t</sub>                        | -0,067***                        |                             | -0,091***                        |                                 |
| Total effect: Periphery <sub>c</sub>                   | (0,002)                          | (0,003)                     | (0,002)<br>-0,074 ***<br>(0,004) | (0,003)<br>-0,026***<br>(0,006) |
| Total effect: High Leverage <sub>i,s,c</sub>           | -0,032***<br>(0,003)             | -0,027***<br>(0,003)        |                                  |                                 |
| Firm FE                                                | Yes                              | Yes                         | Yes                              | Yes                             |
| Country-sector-year FE<br>Bank FE                      | No<br>No                         | Yes<br>Yes                  | No<br>No                         | Yes<br>Yes                      |
| Obs.<br>R <sup>2</sup>                                 | 1,052,146<br>0.26                | 1,048,091<br>0.28           | 1,052,146<br>0.26                | 1,048,091<br>0.28               |

# Additional role of weak banks in periphery countries

| Au | Dependent variable: (Net investment/Ca                   |           | y countr  | 163                  |
|----|----------------------------------------------------------|-----------|-----------|----------------------|
|    |                                                          | (1)       | (2)       | (3)                  |
|    | $Post_t \times Periphery_c \times High Leverage_{i,s,c}$ |           |           | -0,034***<br>(0,004) |
|    | $Post_t \times High Leverage_{i,s,c}$                    | -0,034*** | -0,029*** | -0,011 ***           |

(4)

-0.027 \*\*\*

-0.011 \*\*\*

(0.004)

(0.003)

0.002 (0.004)

-0,003

(0.003)

Yes

Yes

Yes

1,577,267

0.20

18 / 25

(0.002)

-0.002

(0.002)

Yes

Yes

Yes

1,577,267

0.20

-0.001

Yes

No

No

1,582,082

0.18

(0.002)

(0.003)

-0.003

(0.004)

-0.002

(0.003)

Yes

No

No

1,582,082

0.18

-0.036\*\*\* (0.003)

 $Post_t \times Peripherv_c$ 

 $Post_t \times Weak bank_i$ 

Country-sector-year FE

Firm FE

Bank FE

Obs.

 $R^2$ 

(0.002) $Post_t \times Peripherv_c \times Weak bank_i$ 

# Benchmark results with short-term leverage

Dependent variable: (Net investment/Capital) $_{i,s,c,t}$ 

|                                                          | (1)        | (2)       | (3)        | (4)        |
|----------------------------------------------------------|------------|-----------|------------|------------|
| $Post_t \times Periphery_c \times High Leverage_{i.s.c}$ |            |           | -0,034***  | -0,019 *** |
| 1-1-                                                     |            |           | (0,003)    | (0,003)    |
| $Post_t \times Periphery_c$                              |            |           | -0,033***  |            |
|                                                          |            |           | (0,002)    |            |
| $Post_t \times High Leverage_{i,s,c}$                    | -0,021 *** | -0,000    | 0,008***   | 0,010 ***  |
| 1-1-                                                     | (0,001)    | (0,002)   | (0,002)    | (0,002)    |
| Total effect: Post <sub>t</sub>                          | -0,047***  | -0,000    | -0,072 *** | -0,010 *** |
|                                                          | (0,001)    | (0,002)   | (0,001)    | (0,002)    |
| Total effect: Periphery <sub>c</sub>                     |            |           | -0,067***  | -0,019 *** |
|                                                          |            |           | (0,002)    | (0,003)    |
| Total effect: High Leverage <sub>i.s.c</sub>             | -0,021 *** | -0,000    | -0,026***  | -0,010 *** |
|                                                          | (0,001)    | (0,002)   | (0,002)    | (0,002)    |
| Firm FE                                                  | Yes        | Yes       | Yes        | Yes        |
| Country-sector-year FE                                   | No         | Yes       | No         | Yes        |
| Bank FE                                                  | No         | Yes       | No         | Yes        |
| Obs.                                                     | 2,420,571  | 2,415,809 | 2,420,571  | 2,415,809  |
| $R^2$                                                    | 0.17       | 0.18      | 0.17       | 0.18       |

# Benchmark results with long-term leverage

Dependent variable: (Net investment/Capital) $_{i,s,c,t}$ 

|                                                          | (1)       | (2)       | (3)        | (4)       |
|----------------------------------------------------------|-----------|-----------|------------|-----------|
| $Post_t \times Periphery_c \times High Leverage_{i,s,c}$ |           |           | -0,011 *** | 0,001     |
| , ,                                                      |           |           | (0,003)    | (0,003)   |
| $Post_t \times Periphery_c$                              |           |           | -0,037 *** |           |
|                                                          |           |           | (0,002)    |           |
| $Post_t \times High Leverage_{i,s,c}$                    | -0,063*** |           |            |           |
|                                                          | (0,001)   | (0,002)   | (0,002)    | (0,002)   |
| Total effect: Post <sub>t</sub>                          | -0,068*** | •         | •          |           |
|                                                          | (0,001)   | (0,002)   | (0,001)    | (0,002)   |
| Total effect: Periphery <sub>c</sub>                     |           |           | -0,048***  |           |
|                                                          |           |           | (0,002)    | (0,003)   |
| Total effect: High Leverage <sub>i,s,c</sub>             | -0,063*** | -0,064*** | -0,060***  | -0,063*** |
|                                                          | (0,001)   | (0,002)   | (0,002)    | (0,002)   |
| Firm FE                                                  | Yes       | Yes       | Yes        | Yes       |
| Country-sector-year FE                                   | No        | Yes       | No         | Yes       |
| Bank FE                                                  | No        | Yes       | No         | Yes       |
| Obs.                                                     | 2,430,249 | 2,425,533 | 2,430,249  | 2,425,533 |
| $R^2$                                                    | 0.17      | 0.19      | 0.17       | 0.19      |

# Sluggish investment: dynamic persistent effects

To investigate the dynamic responses in the baseline model, we run the following regressions by local projections:

$$\begin{split} \left(\frac{\text{Investment}}{\text{Capital}}\right)_{it+h} = & \beta_{1h} \; \text{POST}_{t} + \\ & \beta_{2h} \; \text{POST}_{t} \times \text{Periphery}_{i} + \\ & \beta_{3h} \; \text{POST}_{t} \times \text{High Leverage}_{i} + \\ & \beta_{4h} \; \text{POST}_{t} \times \text{Periphery}_{i} \times \text{High Leverage}_{i} + \\ & \mathbf{X}_{it-1} \; '\boldsymbol{\beta_{h}} + \boldsymbol{\alpha_{i}} + \boldsymbol{\alpha_{c,s}} + \boldsymbol{\alpha_{b}} + \boldsymbol{\epsilon_{it}} \end{split}$$

## Impulse responses of investment

(Euro-area centre economies)



Note: We plot 95 percent confidence interval (calculated using two-way clustered standard errors by firm and year) as a shaded area

## Impulse responses of investment

(Euro-area periphery economies)



Note: We plot 95 percent confidence interval (calculated using two-way clustered standard errors by firm and year) as a shaded area

### **Conclusions**

- 1 Significant debt overhang and rollover risks dampen investment in euro area
  - Initially high leverage discourages investment during crisis, in a manner consistent with debt overhang
  - Initially shorter debt maturity reduces investment more in crisis and in the Periphery euro area, consistent with higher rollover risk associated to sovereign risk

### Policy implication:

- Debt overhang and rollover risk help explain 20 percent of the investment decline
- Bank recapitalisation and legacy debt approaches help but do not solve completely the investment problem

# Debt Overhang, Rollover Risk, and Corporate Investment: Evidence from the European Crisis<sup>†</sup>

Şebnem Kalemli-Özcan UMD, NBER & CEPR

Luc Laeven ECB & CEPR David Moreno Banco Central de Chile

**Teaching slides** 

<sup>&</sup>lt;sup>†</sup>The views expressed here are solely those of the authors and do not necessarily reflect the views of the European Central Bank or the Banco Central de Chile.

#### References I

- Becker, Bo and Victoria Ivashina. 2014. "Cyclicality of Credit Supply: Firm Level Evidence." *Journal of Monetary Economics* 62:76–93.
- Bond, Stephen and Costas Meghir. 1994. "Dynamic Investment Models and the Firm's Financial Policy." Review of Economic Studies 61 (2):197–222.
- Diamond, Douglas W. 1991. "Debt Maturity Structure and Liquidity Risk." The Quarterly Journal of Economics: 709–737.
- Hennessy, Christopher A. 2004. "Tobin's Q, Debt Overhang, and Investment." Journal of Finance 59 (4):1717–1742.
- Hennessy, Christopher A., Amnon Levy, and Toni M. Whited. 2007. "Testing 'Q' Theory With Financing Frictions." *Journal of Financial Economics* 83 (3):691–717.
- Kalemli-Özcan, Şebnem, Bent Sørensen, Carolina Villegas-Sánchez, Vadym Volosovych, and Sevcan Yeşiltaş. 2015. "How to Construct Nationally Representative Firm Level Data from the Orbis Global Database: New Facts and Aggregate Implications." NBER Working Paper 21558, National Bureau of Economic Research, Cambridge, MA.
- Lamont, Owen. 1995. "Corporate-Debt Overhang and Macroeconomic Expectations." *American Economic Review* 85 (5):1106–17.
- Melzer, Brian. 2012. "Reduced Investment by Homeowners with Negative Equity." Mimeo, Kellogg School of Management, Northwestern University.
- Myers, Stewart C. 1977. "Determinants of Corporate Borrowing." Journal of Financial Economics 5 (2):147–175.
- Occhino, Filippo and Andrea Pescatori. 2010. "Debt Overhang and Credit Risk in a Business Cycle Model." Working Paper 1003, Federal Reserve Bank of Cleveland.
- Philippon, Thomas and Philipp Schnabl. 2013. "Efficient Recapitalization." Journal of Finance 68 (1):1–42.
- Whited, Toni M. 1992. "Debt, Liquidity Constraints, and Corporate Investment: Evidence From Panel Data." *Journal of Finance* 47 (4):1425–1460.