Model

Facts

Macro Model and Quantitative Results

Conclusion

### Macroeconomic Effects of Delayed Capital Liquidation

Wei Cui (UCL)

Dec 2021

#### Capital reallocation with financial shocks

- Two types of capital reallocation (after which, in general, new productivity applies):
  - full liquidation (i.e., acquisition, about 70%);
  - partial liquidation (i.e., sales of properties, plants, and equipments, about 30%).
- In 2018, \$0.81 trillion capital reallocation from COMPUSTAT non-financial firms:
  - about 32% of all capital expenditures;

Introduction

000

- the reallocation expenditure ratio (R-E) is procyclical;
- the partial liquidation share in total reallocation (P share) is countercyclical.
- Note: debt is also procyclical; how do financial shocks affect liquidation decisions, productivity, and output?

#### Contribution

- A theory of "financially-constrained option value" to understand liquidation decisions.
  - Firms face idiosyncratic liquidation cost and idiosyncratic productivity risks (well established facts).
- A threshold of liquidation cost; unproductive firms will
  - avoid possibly financial constraints if liquidated;
  - but they give up possible future smaller liquidation cost and/or productivity gain.
- After credit tightening, more unproductive firms will likely to stay in the medium term (if they can survive). Reasons:
  - lower debt-servicing cost;

Introduction

000

- GE effects, i.e., lower wages and lower interest rates;
- the quantitative exercises assess the importance of financial shocks.
- Note: productivity shocks produce the opposite, cleansing effect!

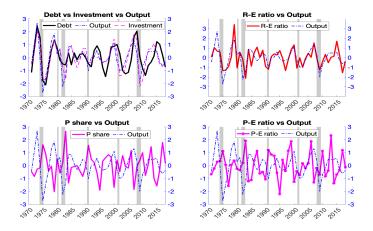


- Capital reallocation: Jovanovic Rousseau (2002), Eisfeldt and Rampini (2006), Cao and Shi (2016), Wright, Xiao, and Zhu (2017), ...
- Financing constraints and partial irreversibility: Caggese (2007), Kahn and Thomas (2013), Lanteri (2018), ...
- Financial shocks: Jermann Quadrini (2012), Del Negro et al (2017), ...
- This paper: a theory of leveraged option value (unproductive firms may exhibit higher firm leverage)
  - together with the aggregate implication of financial shocks.

Macro Model and Quantitative Results

Conclusion

Procyclical debt, investment, and overall reallocation



...but countercyclical P share and P-E ratio.

Facts

Macro Model and Quantitative Results

Conclusion

#### Summary statistics

| Corr.          | Debt | R-E ratio   | P-E ratio     | P share       | Output        |
|----------------|------|-------------|---------------|---------------|---------------|
| Debt           | 1    | 0.52 (0.60) | -0.15 (-0.38) | -0.45 (-0.62) | 0.59 (0.79)   |
| R-E ratio      | -    | 1           | -0.16 (-0.30) | -0.77 (-0.86) | 0.64 (0.66)   |
| P-E ratio      | -    | -           | 1             | 0.75 (0.75)   | -0.17 (-0.39) |
| P share        | -    | -           | -             | 1             | -0.53 (-0.66) |
| Output         | -    | -           | -             | -             | 1             |
| Rel. Std. Dev. | 1.19 | 5.79        | 5.59          | 8.68          | 1             |

Note: Numbers in brackets are the corresponding correlations for NBER recessions. Note: The correlations of investment with output, the R-E ratio, the P share are 0.85, 0.57, and -0.49, respectively.

 Macro Model and Quantitative Results

Conclusion

# A model of financially constrained option value

- Why might low productive firms, whose capital not being liquidated, be financially constrained?
- After a tightening of credit, are they more or less likely to liquidate capital?

Model 0●000000000000 Macro Model and Quantitative Results

Conclusion 00

#### A firm problem

• An entrepreneur with preference

$$u(c) = \log(c).$$

- *c* can be interpreted as dividends.
- The preference can also be used to modeling dividend smoothing.
- If running a firm with capital k, the gross return is  $R^k = r + 1 \delta$  where  $r \ge 0$  and  $\delta \in [0, 1]$ .
- Risk-free bonds with return *R*.

#### Resale and financial frictions

• *Resale frictions*- when selling, have to sell the whole firm (note: this assumption will be relaxed)

$$k_{t+1} \in \{0\} \cup [(1-\delta)k_t, +\infty).$$

- i.i.d. stochastic utility liquidation cost  $\zeta \in [\underline{\zeta}, \overline{\zeta}]$  with a CDF F(.).
  - $\zeta$  sometimes drives the entrepreneur to liquidate;
  - other times it forces them to stay in business.
- Financial frictions- collateral constraints

$$\mathsf{Rb}_{t+1} \geq - heta(1-\delta)\mathsf{k}_{t+1},$$

and  $\theta$  measures the tightness.

Introduction

**Model** 000●000000000

Conclusion

#### The entrepreneur's problem

$$V(k, b, \zeta) = \max\{V^0(k, b) - \mathbb{1}_{\{k > 0\}}\zeta, V^1(k, b)\}.$$

where if not running business

Facts

$$V^{0}(k,b) = \max_{c,b_{+1}} \left\{ u(c) + \beta \mathbb{E} \left[ V(0,b_{+1},\zeta_{+1}) \right] \right\} \text{ s.t.}$$
(1)

$$c+b_{+1}=R^kk+Rb; (2)$$

$$b_{+1} \ge 0, \tag{3}$$

if running business

$$V^{1}(k,b) = \max_{c,k_{+1},b_{+1}} \{u(c) + \beta \mathbb{E} \left[V(k_{+1},b_{+1},\zeta_{+1})\right]\} \text{ s.t.}$$
(4)

$$c + b_{+1} + k_{+1} = R^k k + Rb;$$
 (5)

$$Rb_{+1} \ge -\theta k_{+1}; \tag{6}$$

$$k_{+1} - (1 - \delta)k \ge 0.$$
 (7)

#### Policy function

#### Proposition

Define  $N^0(k, b) \equiv R^k k + Rb$  and  $N^1(k, b) \equiv rk + q\left(\frac{k}{k+b}\right)(1-\delta)k + Rb$  as net worths. Then,

$$V^{0}(k,b) = J^{0} + rac{\log N^{0}(k,b)}{1-eta}, V^{1}(k,b) = J^{1}\left(rac{k}{k+b}
ight) + rac{\log N^{1}(k,b)}{1-eta},$$

where  $J^0$  is a constant and where  $J^1(\lambda)$  and  $q(\lambda) \le 1$  are functions of leverage  $\lambda \equiv k/(k+b)$ . Further, q < 1 means that the resale constraint is strictly binding. The consumption, capital, and bond policy functions have the following algebraic forms:

$$c = \begin{cases} (1-\beta)N^0 & \text{not running} \\ (1-\beta)N^1 & \text{running} \end{cases}; \quad k_{+1} = \begin{cases} 0 & \text{not running} \\ \frac{\lambda_{+1}\beta N^1}{1+(q-1)\lambda_{+1}} & \text{running} \end{cases};$$
$$b_{+1} = \begin{cases} \beta N^0 & \text{not running} \\ \frac{(1-\lambda_{+1})\beta N^1}{1+(q-1)\lambda_{+1}} & \text{running} \end{cases}.$$

Introduction

**Model** 00000●0000000 Conclusion

#### Scale-invariant property

- The proposition says: consumes  $1 \beta$  of net worths and saves  $\beta$  fraction...and we can focus on k = 1 and leverage  $\lambda$ .
- Let  $n^0(\lambda) = N^0(1, \lambda^{-1} 1)$  where

$$\lambda \leq \bar{\lambda} = \left(1 - \frac{\theta}{R}\right)^{-1}$$

• "Scale-invariant" property:  $\forall \rho > 0$ 

$$V(\rho k, \rho b, \zeta) = V(k, b, \zeta) + \frac{\log \rho}{1 - \beta}.$$
 (8)

- A liquidation threshold for a leverage  $\lambda$ 
  - directly related to, but more useful than, option value.
- Comparing the value of liquidating and the value of staying.

#### A firm-abandoning problem

• To focus on liquidation, assume the firm is unproductive

$$R^k \equiv r + 1 - \delta < R. \tag{A1}$$

• For those firms not liquidated,  $k_{+1} = (1 - \delta)k$ , and therefore

$$c+b_{+1}=rk+Rb.$$

- As the firm is unproductive, i.e., r is small, firm debt  $-b_{+1}$  may need to be large or hit the financing constraint (6)
  - ... because of the smoothing need represented by  $u(c) = \log(c)$ .
  - The point is more general: any non-flexible cost will produce similar results.

Conclusion 00

#### Liquidation threshold

#### Proposition

Under some conditions including A1, the liquidation threshold satisfies the forward looking condition

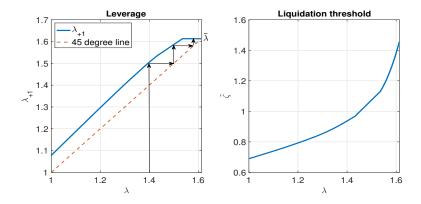
$$\begin{split} \tilde{\zeta}(\lambda) &= \log\left(\frac{(1-\beta)n^{0}(\lambda)}{n^{0}(\lambda) - (1-\delta)/\lambda_{+1}}\right) + \frac{\beta}{1-\beta}\log\left(\frac{R}{n^{0}(\lambda_{+1})}\right) \\ &+ \frac{\beta}{1-\beta}\log\left(\frac{\beta n^{0}(\lambda)}{1-\delta}\right) + \beta\left[\tilde{\zeta}(\lambda_{+1}) - \int_{\underline{\zeta}}^{\tilde{\zeta}(\lambda_{+1})}F(x)dx\right]. \end{split}$$

- 1st term: difference between utilities of consumption today from liquidating and from staying;
- 2nd and 3rd terms: difference between continuation values;
- 4th term: recursive because of a similar liquidation decision next period.

Macro Model and Quantitative Results

Conclusion

#### Leverage dynamics and liquidation policy



The threshold is an increasing function of leverage. The incentive to liquidate is higher given a higher leverage (that implies a smaller c).

Conclusion

#### A thought experiment

Suppose  $\bar{\lambda}$  is fixed at a certain level  $\lambda^h$  until t = 0.

- Unexpectedly,  $\bar{\lambda}$  falls permanently from  $\lambda^h$  to  $\lambda'$ , from t = 0 onward.
- Consider a sample path of no liquidation.
- Focus on the case in which both resale and financial constraints are binding.
- Exclude forced liquidation.

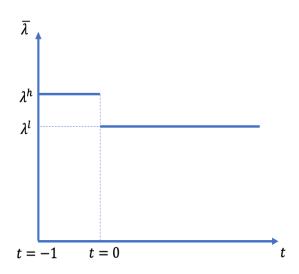
**Model** 0000000000●00

Facts

Macro Model and Quantitative Results

Conclusion

#### A permanent tightening in credit



 Macro Model and Quantitative Results

Conclusion

#### Liquidation threshold after shocks



#### What have we learned?

- Liquidation more likely on impact, but less likely in the medium term.
  - A tightened constraint makes the short run more painful;
  - However, it can raise the option value because of lower debt servicing cost (after forced deleveraging).
- When r is not too small, option value dominates and entrepreneurs are less likely to liquidate:
  - the liquidation threshold cost falls;
  - the probability of being liquidated falls.
- In the paper, if interest rate is endogenized, liquidation likelihood can fall also on impact.
- Warning: abstracts from forced liquidation!

**Model** 

Macro Model and Quantitative Results

Conclusion

## The macro model with quantitative analysis

- Introducing GE effects (via interest and wage rates) that further delay capital liquidation.
- Quantitative assessment of the reallocation channel.

Model

Macro Model and Quantitative Results

Conclusion

#### The representative household

#### A Representative Household

Facts

$$W(B^{H};X) = \max_{C^{H},L^{H},B_{+1}^{H}} \left\{ U(C^{H},L^{H}) + \beta^{H}\mathbb{E}\left[ W(B_{+1}^{H};X_{+1})|X] \right\} \text{ s.t.}$$

$$C^{H} + B^{H}_{+1} = wL^{H} + RB^{H},$$
 (9)

where  $C^H$  is consumption,  $L^H$  is labor supply,  $B^H$  is bond holding, w is the wage rate, and X is the aggregate state.

٠

Conclusion 00

#### Entrepreneurs

• Productivity z follows a Markov process (  $z \in \{z^l, z^h\}$  with  $0 < z^l < z^h)$ 

$$\mathsf{P}\{z_t = z^j \mid z_{t-1} = z^i\} = p^{ij},$$

where  $i, j \in \{I, h\}$ .

Production

Facts

$$y(i) = [z(i)k(i)]^{\alpha} [A\ell(i)]^{1-\alpha}$$

• Profit rate is endogenous because

$$\Pi(z,k;w) = \max_{\ell} \left\{ (zk)^{\alpha} (A\ell)^{1-\alpha} - w\ell \right\} = \pi zk$$

and

$$\pi = \alpha \left(\frac{(1-\alpha)A}{w}\right)^{\frac{1-\alpha}{\alpha}}$$

ction Facts Model

Conclusion

#### Entrepreneurs (continued)

• Collateral constraints (with *d* as the resale discount):

$$R_{+1}b_{+1} \ge -\theta(z)(1-d)k_{+1}$$

• Partially sell up to a  $\phi$  fraction of existing capital:

$$k_{+1} \geq (1-\phi)(1-\delta)k.$$

• To get rid of R (and only use  $R_+$ ), define  $\tilde{\lambda}$ 

$$ilde{\lambda}\equiv rac{k}{k+Rb}$$
 and, thus, $\lambda=rac{ ilde{\lambda}}{ ilde{\lambda}+(1- ilde{\lambda})/R}$ 

• Define  $\tilde{B} \equiv RB$  (bonds held by entrepreneurs) and  $\tilde{B}^H \equiv RB^H$  (bonds held by households).

#### Market clearing

• Backward looking wealth dynamics:

Facts

$$\begin{split} \mathcal{K}_{+1}^{h} &= \frac{\tilde{\lambda}_{+1}^{h}}{\tilde{\lambda}_{+1}^{h} + (1 - \tilde{\lambda}_{+1}^{h})/R_{+1}} \beta \left[ \sum_{j} \left( z^{h} \pi - \delta + \frac{1}{\tilde{\lambda}^{j}} \right) p^{jh} \mathcal{K}^{j} + p^{lh} \tilde{B} \right]; \\ \mathcal{K}_{+1}^{l} &= (1 - \phi)(1 - \delta) \sum_{j} \left[ 1 - \mathcal{F}(\tilde{\zeta}^{j}) \right] p^{jl} \mathcal{K}^{j}; \\ \tilde{B}_{+1}/R_{+1} &= \beta \sum_{j} \mathcal{F}(\tilde{\zeta}^{j}) \left( z^{l} \pi - \delta + \frac{1}{\tilde{\lambda}^{j}} \right) p^{jl} \mathcal{K}^{j} + \beta p^{ll} \tilde{B}. \end{split}$$

• Markets for credit and labor

$$\sum_{j} \left(\frac{1}{\tilde{\lambda}_{+1}^{j}} - 1\right) K_{+1}^{j} + \tilde{B}_{+1} + \tilde{B}_{+1}^{H} = 0;$$
$$A^{-1} \left(\frac{\pi}{\alpha}\right)^{\frac{1}{1-\alpha}} \sum_{j} \left(p^{jh} z^{h} + p^{jl} z^{l}\right) K^{j} = L^{H}.$$

• See paper for equilibrium definition with optimization problems.

Model

Macro Model and Quantitative Results

Conclusion

#### Some specification

Productivity

$$\log(\widetilde{z}^h) = \log\left(z^h
ight)^lpha = \sigma ext{ and } \log(\widetilde{z}^l) = \log(z^l)^lpha = -\sigma.$$

Utility function

$$U(C_H, L_H) = \frac{\left(C_H - \frac{\mu L_H^{1+\nu}}{1+\nu}\right)^{1-\varepsilon} - 1}{1-\varepsilon}$$

Targeting R-E ratio and output volatility, by using exogenous shocks

$$\log A_t = \rho_A \log A_{t-1} + \epsilon_t^A;$$
  
$$\log \theta_t = (1 - \rho_\theta) \log \theta + \rho_\theta \log \theta_{t-1} + \epsilon_t^\theta,$$

where  $0 < \rho_A, \rho_\theta < 1$ ,  $\epsilon_t^A \sim N(0, \sigma_A^2)$ , and  $\epsilon_t^\theta \sim N(0, \sigma_\theta^2)$  are i.i.d. normal.

Facts

**1odel** 00000000000000 Macro Model and Quantitative Results

Conclusion

#### Calibration

|                    | Value | Explanation/Target                       |                  | Value | Explanation/Target           |
|--------------------|-------|------------------------------------------|------------------|-------|------------------------------|
| $\beta^{H}$        | 0.98  | Risk-free rate 2%                        | $\phi$           | 3.96% | Share of partial sales: 28%  |
| ε                  | 1     | Household risk aversion                  | δ                | 8.88% | Effective depr. rate: 10%    |
| ν                  | 1/1.5 | Inv. labor supply elast.                 | $\bar{\zeta}$    | 10.54 | See the discussion in text.  |
| $\mu$              | 2.34  | Hours worked 1/3                         | ζ                | 3.559 | R-E ratio: 30%               |
| $p^{hh}$           | 0.845 | Prod. persistence 0.69                   | ξ                | 34.49 | Acq costs: 1.68% of output   |
| $p^{\prime\prime}$ | 0.845 | $p'' = p^{hh}$                           | θ                | 0.42  | Debt-to-output: 65.5%        |
| ĩ <sup>h</sup>     | 1.28  | Prod. std. dev. 0.18                     | т                | 0.10  | Exogenous                    |
| ĩ                  | 0.78  | $\log(\tilde{z}_l) = -\log(\tilde{z}_h)$ | ρΑ               | 0.83  | Exogenous                    |
| $\alpha$           | 0.30  | Capital share                            | $\rho_{\theta}$  | 0.83  | Exogenous                    |
| d                  | 0.10  | 10% cost of partial sells                | $\sigma_A$       | 0.52% | Output volatility 1.92%      |
| $\beta$            | 0.90  | Investment/output: 18.1%                 | $\sigma_{	heta}$ | 2.09% | Relative R-E volatility 5.79 |

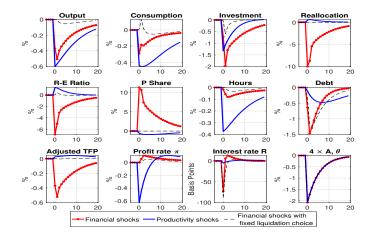
6 **Mod** 

Macro Model and Quantitative Results

Conclusion

#### Impulse response functions

TFP shocks: cleansing effect; countercyclical R-E. Financial shocks: procyclical R-E, investment, debt and countercyclical P share as in the data.



Model

Facts

Macro Model and Quantitative Results

Conclusion

#### **Business-cycle statistics**

| Debt                                                                           | R-E                             | P-E                                                                                        | P share                                              | Output                                                |  |  |  |  |  |
|--------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|
| 1                                                                              | 0.52 (0.54)                     | -0.15 (-0.77)                                                                              | -0.45 (-0.67)                                        | 0.59 (0.51)                                           |  |  |  |  |  |
| -                                                                              | 1                               | -0.16 (-0.87)                                                                              | -0.77 (-0.97)                                        | 0.64 (0.64)                                           |  |  |  |  |  |
| -                                                                              | -                               | ì                                                                                          | 0.75 (0.96)                                          | -0.17 (-0.87)                                         |  |  |  |  |  |
| -                                                                              | -                               | -                                                                                          | ì                                                    | -0.53 (-0.78)                                         |  |  |  |  |  |
| -                                                                              | -                               | -                                                                                          | -                                                    | 1                                                     |  |  |  |  |  |
| Rel. Std. Dev 1.19 (1.29) 5.79 (5.79)                                          |                                 | 5.59 (5.00)                                                                                | 8.68 (10.43)                                         | 1                                                     |  |  |  |  |  |
| Note: Numbers in brackets are results from the model after I feed the smoothed |                                 |                                                                                            |                                                      |                                                       |  |  |  |  |  |
| shocks into the model.                                                         |                                 |                                                                                            |                                                      |                                                       |  |  |  |  |  |
|                                                                                | 1<br>-<br>-<br>-<br>1.19 (1.29) | 1 0.52 (0.54)<br>- 1<br><br><br>1.19 (1.29) 5.79 (5.79)<br>ers in brackets are results fro | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |  |  |  |  |

Note: The correlations of investment with output, the R-E ratio, and the P share are 0.85 (0.95), 0.57 (0.56), -0.49 (-0.74), respectively.

#### Understanding the option value effect

- Reallocation of used capital is thus persistently delayed.
- The magnitude is *not* mainly caused by the lower demand from productive firms.
- To understand this claim, recall

R-E ratio = 
$$\frac{L}{L+I} = \frac{FL+PL}{FL+PL+I}$$
.

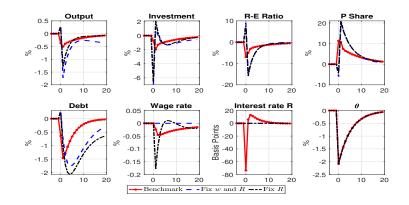
- To generate a falling L-E ratio, capital liquidation (L) must fall more than the fall of investment (1).
- Demand effect will only move L and I with the same amount.

#### Counterfactuals

Facts

The GE effects are crucial in the quantitative analysis to obtain the co-movements of investment and reallocation.

A lower interest/wage rate makes staying option more attractive.

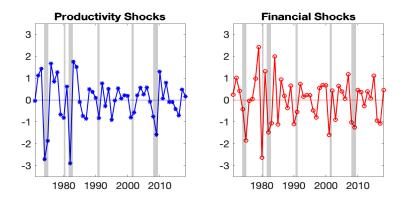


Macro Model and Quantitative Results

Conclusion

#### Smoothed shocks

Note: our analysis excludes the financial sector and housing issues; but the analysis still suggests that financial shocks have become relatively more important.



Model

Macro Model and Quantitative Results

Conclusion

### Conclusion

Facts

#### Takeaways

- A theory of financially-constrained option value of staying.
- The trade-off between staying and liquidating
  - which may imply a negative relationship between leverage and productivity (supported by the data).
- A tightened financing constraint can worsen the trade-off:
  - longer delay of liquidating an unproductive firm;
  - persistent worse capital allocation that endogenous reduce TFP;
  - new investment falls as well;
  - interest and wage rates amplify the effect and are crucial for the co-movement of new and old capital
- Implication for interest rate policy / capital tax policy.