Behavioral Influence

Christopher Chambers

Tugce Cuhadaroglu

Georgetown

St Andrews

Yusufcan Masatlioglu

Maryland

Decision Theory

Decisions are made in isolation!!!

In reality:

- People sharing the same environment such as members of the same household, friends, colleagues, neighbors, etc.
- We influence each other's behavior through advice, inspiration, imitation, etc.

Social Interactions

- Huge (econometrical) literature on understanding the extent of social interactions in individual decisions:
 - productivity at work (Mas and Moretti, 2009)
 - job search (Topa, 2001)
 - school-achievement (Calvo-Armengol, et al., 2009)
 - teen smoking/drinking, recreational activities (Sacerdote, 2011)
 - adolescent pregnancy (Case and Katz, 1991)
 - crime (Glaser et al. 1996)

Identifying Network

Our Aim

Propose a choice-theoretic approach to social influence

- Describe a simple model of interacting individuals
- Detect influence from observed choice behavior
- Quantify Influence and Identify Preference
- Minimal Data

Road Map

- **I** Baseline Model: Two individuals, conformity behavior (positive)
- 2 General Model: Multi-individual interactions
- **B** Extension: Any type of influence (positive and/or negative)

Primitive

- Domain: |X| > 1 finite set of alternatives
- Two individuals: 1 and 2

Data: $p_1(x, S)$ and $p_2(x, S)$, where

$$p_i(x, S) > 0$$
 for all $x \in S$
 $\sum_{x \in S} p_i(x, S) = 1$

Model

choices $\equiv f(\text{individual component, choices of other})$

 $p_1 \equiv f(w_1, p_2)$

Model

$$w_1(x) + \alpha_1 p_2(x, S)$$

• α_1 influence parameter for individual 1

$$p_1(x,S) = \frac{w_1(x) + \alpha_1 p_2(x,S)}{\sum_{y \in S} [w_1(y) + \alpha_1 p_2(y,S)]}$$

Isolation vs Society

$$p_1(x,S) = \frac{w_1(x) + \alpha_1 p_2(x,S)}{\sum\limits_{y \in S} [w_1(y) + \alpha_1 p_2(y,S)]}$$

 \mathcal{O}

- Two colleagues, Dan and Bob,
- Daily exercise routines during the pandemic
 - exercise home or
 - go for a walk outside.

	Dan	Bob
walk outside	0.71	0.78
exercise home	0.29	0.22

	Dan	Bob
walk outside	0.71	0.78
exercise home	0.29	0.22

- Two Possible Explanations
 - No influence and individual preferences are aligned
 - Individual preferences are not aligned but a strong influence
- Reflection Problem (Manski, 1993)

Gyms are open NOW!!!

	Dan	Bob	Dan	Bob
walk outside	0.71	0.78	0.60	0.70
exercise home	0.29	0.22	0.26	0.19
go to the gym			0.14	0.11

• Observe that $\frac{0.71}{0.29} \approx 2.5 \neq 2.3 \approx \frac{0.60}{0.26}$

!!!Existence of Influence!!!

Gyms are open NOW!!!

	Dan	Bob	Dan	Bob
walk outside	0.71	0.78	0.60	0.70
exercise home	0.29	0.22	0.26	0.19
go to the gym			0.14	0.11

- I!!Existence of Influence!!!
- We can *uniquely* identify
 - Dan and Bob have opposite rankings
 - Dan is strongly influenced by Bob

Model

$$\mathbf{2}$$

$$p_1(x,S) = \frac{w_1(x) + \alpha_1 p_2(x,S)}{\sum_{y \in S} [w_1(y) + \alpha_1 p_2(y,S)]}$$

$$p_2(x,S) = \frac{w_2(x) + \alpha_2 p_1(x,S)}{\sum_{y \in S} [w_2(y) + \alpha_2 p_1(y,S)]}$$

Comment # 1

$$p_i(x,S) = \frac{w_i(x) + \alpha_i p_j(x,S)}{\sum\limits_{y \in S} [w_i(y) + \alpha_i p_j(y,S)]}$$

Alternatively, we can express the model:

$$p_i(x,S) = \frac{\mu_i w_i(x) + (1 - \mu_i) p_j(x,S)}{\sum_{y \in S} [\mu_i w_i(y) + (1 - \mu_i) p_j(y,S)]}$$

where

$$\mu_i = \frac{1}{1 + \alpha_i}$$
 and $1 - \mu_i = \frac{\alpha_i}{1 + \alpha_i}$

Comment # 2

Observing Deterministic or Probabilistic Choice?

$$p_1(x, \{x, y\}) = p_2(x, \{x, y\}) \frac{w_1(x) + \alpha_1}{w_1(x) + w_1(y) + \alpha_1} + p_2(y, \{x, y\}) \frac{w_1(x)}{w_1(x) + w_1(y) + \alpha_1}$$

$$p_1(x, \{x, y\}) = \frac{w_1(x) + \alpha_1 p_2(x, \{x, y\})}{w_1(x) + w_1(y) + \alpha_1}$$

𝔥
𝑘⁹
𝑘⁹
𝑘⁹

t = 0

Story behind our formulation

$$p_1(x,S) = \frac{w_1(x) + \alpha_1 p_2(x,S)}{\sum_{y \in S} [w_1(y) + \alpha_1 p_2(y,S)]}$$

- **1** Random utility with social interactions
- 2 Quantal response equilibrium
- 8 Naive learning

Story 1: Random Utility

- Linear social interaction models: Manski (1993), Blume et al. (2011), Jackson (2011), Blume et al. (2015)
 - $U_i(x) =$ individual private utility + social utility
 - Social utility depends on the expected behaviors of one's peers.
- Discrete choice models with social interactions: Blume (1993), Brock and Durlauf (2001, 2003)
 - Constant strategic complementarity
 - Rational expectations
 - Errors follow a relevant extreme value distribution

Story 1: Random Utility

$$V_i(x,S) = w_i(x) + \alpha_i p_j(x,S)$$

. . .

- $U_i(x,S) = V_i(x,S)\varepsilon_i(x)$
- i.i.d. errors with a Log-logistic distribution, $f(\log \varepsilon_i) = e^{-\log \varepsilon_i} e^{-e^{-\log \varepsilon_i}}$

$$p_i(x,S) = Prob\left(\log U_i(x,S) > \log U_i(y,S) \quad \forall y \neq x\right)$$
$$= Prob\left(\log \varepsilon_i(y) < \log\left(\frac{V_i(x,S)\varepsilon_i(x)}{V_i(y,S)}\right), \quad \forall y \neq x\right)$$

$$= \frac{w_i(x) + \alpha_i p_j(x, S)}{\sum\limits_{y \in S} (w_i(y) + \alpha_i p_j(y, S))}$$

Story 2: Quantal response equilibrium

- A normal form game with two players Dan and Bob,
- The pay-off matrix

Bob

		x	y
Don	x	$(w_1(x)+lpha_1,w_2(x)+lpha_2)$	$(w_1(x),w_2(y))$
Dan	y	$\left(w_1(y),w_2(x)\right)$	$(w_1(y)+lpha_1,w_2(y)+lpha_2)$

Story 2: Quantal response equilibrium

■ s_i is a pure strategy, σ_i is a mixed strategy for player *i*.

- Player *i*'s expected payoff from *s* when *j* plays σ_j $u_i(s, \sigma_j) = \sigma_j(s)(w_i(s) + \alpha_i) + (1 - \sigma_j(s))w_i(s) = w_i(s) + \alpha_i\sigma_j(s).$
- Under the assumption that $U_i(s, \sigma) = u_i(s, \sigma)\varepsilon_{is}$ with i.i.d. log-logistic errors ε_{is} , the QRE outcome coincides with (p_1, p_2) of the dual interaction model.

- Consider $\mathbf{p}(\{x,y,z\}) = (p(x,\{x,y,z\}), p(y,\{x,y,z\}), p(z,\{x,y,z\}))$
- **p**($\{x, y, z\}$) is a point in a simplex

 $\mathbf{p}(\{y, z\})$ is also a point in a simplex

No Influence

• Luce's IIA: $\frac{p_1(x,A)}{p_1(y,A)} = \frac{p_1(x,B)}{p_1(y,B)}$

What about $p_1(\{x, y\})$?

What about $p_1(\{x, y\})$?

Existing of Influence \Rightarrow IIA fails

- Assume the model is correct
- How can we identify parameters of the model (w_i, α_i) ?
- Take two sets X and S (Minimal Data)
- Observe that $\frac{0.71}{0.29} \approx 2.5 \neq 2.3 \approx \frac{0.60}{0.26}$
- Key: Luce's IIA violation

First assume no influence and consider

$$p_i(x,S) = \frac{w_i(x)}{w_i(S)}$$
 and $p_i(x,X) = w_i(x)$

$$d_i(x, S) = p_i(x, S) - p_i(x, X)$$

= $p_i(x, S) + w_i(S)p_i(x, S)$
= $(1 - w_i(S))p_i(x, S) > 0$

In our model,

$$d_i(x,S) = \underbrace{\frac{1 - w_i(S)}{1 + \alpha_i} p_i(x,S)}_{\text{individual}} + \underbrace{\frac{\alpha_i}{1 + \alpha_i} d_j(x,S)}_{\text{social influence}}$$

$$\frac{d_i(x,S)}{p_i(x,S)} - \frac{d_i(y,S)}{p_i(y,S)} = \frac{\alpha_i}{1+\alpha_i} \left[\frac{d_j(x,S)}{p_i(x,S)} - \frac{d_j(y,S)}{p_i(y,S)} \right]$$

$$\frac{\alpha_i}{1+\alpha_i} = \frac{\frac{d_i(x,S)}{p_i(x,S)} - \frac{d_i(y,S)}{p_i(y,S)}}{\frac{d_j(x,S)}{p_i(x,S)} - \frac{d_j(y,S)}{p_i(y,S)}}$$

• What about w_i ?

$$w_i(x) = p_i(x, X) + \alpha_i(p_i(x, X) - p_j(x, X))$$

Revisit Example

	Dan	Bob		Dan	Bob
walk outside	0.71	0.78		0.60	0.70
exercise home	0.29	0.22		0.26	0.19
go to the gym				0.14	0.11
$\frac{\alpha_1}{1+\alpha_1} = \frac{\frac{d_i(w,S)}{p_i(w,S)} - \frac{d_i(e,S)}{p_i(e,S)}}{\frac{d_j(w,S)}{p_i(w,S)} - \frac{d_j(e,S)}{p_i(e,S)}} = \frac{\frac{0.11}{0.71} - \frac{0.03}{0.29}}{\frac{0.08}{0.71} - \frac{0.03}{0.29}} = \frac{5}{6}$					

 $\boldsymbol{\alpha}_1: 5 \text{ and } \alpha_2: 1$

• $w_1: 0.1, 0.6, 0.3$ and $w_2: 0.8, 0.12, 0.08$

- Quantify Influence and Identify Preference
- Minimal Data
- Can we falsify this model?

Define $\beta_i(x, y, S)$ for all distinct $x, y \in S \neq X$ with $\frac{d_j(x, S)}{p_i(x, S)} - \frac{d_j(y, S)}{p_i(y, S)} \neq 0$ as follows:

$$\frac{d_i(x,S)}{p_i(x,S)} - \frac{d_i(y,S)}{p_i(y,S)} = \beta_i(x,y,S) \left[\frac{d_j(x,S)}{p_i(x,S)} - \frac{d_j(y,S)}{p_i(y,S)} \right]$$
(1)

Independence [I].

i) $\beta_i(x, y, S)(:= \beta_i)$ is independent of S, x, y, and

ii) β_i satisfies (1) for all $S \neq X$ and distinct $x, y \in S$.

Positive Uniform Boundedness: $\beta_i(x, y, S) < \min_{z \in X} \left\{ \frac{p_i(z, X)}{p_j(z, X)} \right\}$, for all S and $x, y \in S$.

Non-negativeness: $\beta_i(x, y, S) \ge 0$, for all S and $x, y \in S$.

Theorem

Suppose p_i does not satisfy IIA at least for one individual. Then (p_1, p_2) has a **dual interaction** representation with $\alpha_1, \alpha_2 \in \mathbb{R}_+$ if and only if Axiom 1-3 hold. Moreover, $(w_1, w_2, \alpha_1, \alpha_2)$ is uniquely identified.

Summary

Our aim was

- propose a simple and intuitive model
- detect interaction from observed choice behavior
- quantify influence and identify preference
- minimal data requirement (one menu variation)

Generalization

$$p_i(x,S) = \frac{U_i(x|S,\alpha_i,p_j)}{\sum_{y \in S} U_i(y|S,\alpha_i,p_j)}$$

• The current paper: $U_i(x|S, \alpha_i, p_j) = w_i(x) + \alpha_i p_j(x, S)$

$$U_i^*(x|S, \alpha_i, p_j) = (1 - \alpha_i) \frac{w_i(x)}{w_i(S)} + \alpha_i p_j(x, S)$$

Many more...

Uniqueness and Stability

- Uniqueness of "equilibrium"
- Stability of the "equilibrium"

Uniqueness and Stability

- Uniqueness of "equilibrium":
 - For any $(w_1, w_2, \alpha_1, \alpha_2)$, is there a unique pair of (p_1^*, p_2^*) consistent with the model?
- Stability of the equilibrium:
 - Let (p_1^0, p_2^0) be the initial behavior
 - Assume the dual interaction model
 - What happens in the long run?

Uniqueness and Stability

THEOREM

Let $w_i \gg 0$ and $\alpha_i \ge 0$ for each $i \in \{1, 2\}$. Let $S \in 2^X \setminus \{\emptyset\}$. Then there are unique $p_i^*(S) \in \Delta_{++}(S)$ for which for all $x \in S$,

$$p_i^*(x,S) = \frac{w_i(x) + \alpha_i p_j^*(x,S)}{\sum_{y \in S} w_i(y) + \alpha_i p_j^*(y,S)}$$

Further, let $(p_1^0, p_2^0) \in \Delta(S) \times \Delta(S)$. Define for each $i \in \{1, 2\}$ and $t \ge 1$, $p_i^t(\cdot, S) \in \Delta(S)$ via

$$p_{i}^{t}(x,S) \equiv \frac{w_{i}(x) + \alpha_{i}p_{j}^{t-1}(x,S)}{\sum_{y \in S} w_{i}(y) + \alpha_{i}p_{j}^{t-1}(y,S)}$$

Then for each $i \in \{1, 2\}$, $\lim_{t \to \infty} p_i^t = p_i^*$.

Dynamic Identification

- What about identification in this dynamic setting? Any inference if we were to observe $\dots p_1^{t-1}, p_1^t \dots$?
- Yes! Although the behavior changes every period, it changes consistently. Same identification strategy:

$$\beta_i(x, y, S) = \frac{\frac{d_i^t(x, S)}{p_i^t(x, S)} - \frac{d_i^t(y, S)}{p_i^t(y, S)}}{\frac{d_j^{t-1}(x, S)}{p_i^t(x, S)} - \frac{d_j^{t-1}(y, S)}{p_i^t(y, S)}} = \frac{\alpha_i}{1 + \alpha_i}$$

$$w_i(x) = p_i^t(x, X) + \alpha_i(p_i^t(x, X) - p_j^{t-1}(x, X))$$

Extensions

- Multi-agent Interaction
- Negative Interaction

Multi-agent Interaction

Multi-agent Interaction

Let N finite set of agents with $(p_1, p_2, ..., p_n)$.

DEFINITION

 $(p_1, p_2, ..., p_n)$ has a **social interaction** representation if for each $i \in N$ there exist $w_i : X \to (0, 1)$ with $\sum_{x \in X} w_i(x) = 1$ and $\alpha_i \in \mathbb{R}^{n-1}$ such that

$$p_i(x,S) = \frac{w_i(x) + \boldsymbol{\alpha}_i \cdot \mathbf{p}_{-i}(x,S)}{\sum_{y \in S} [w_i(y) + \boldsymbol{\alpha}_i \cdot \mathbf{p}_{-i}(y,S)]}$$

for all $x \in S$ and for all S.

Multi-agent Interaction

$$\boldsymbol{\gamma}_i \cdot \left(\frac{\mathbf{d}_{-i}(x,S)}{p_i(x,S)} - \frac{\mathbf{d}_{-i}(y,S)}{p_i(y,S)}\right) = \frac{d_i(x,S)}{p_i(x,S)} - \frac{d_i(y,S)}{p_i(y,S)}.$$
(2)

 $\mathcal{B}_i = \{ \boldsymbol{\gamma}_i \in \boldsymbol{R}^{n-1} \mid \! \boldsymbol{\gamma}_i \text{ solves } (2) \text{ for any } \boldsymbol{S} \text{ and distinct } \boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{S} \}$

N-Independence [N-I]. \mathcal{B}_i is nonempty.

N-Independence [*N-I*]. \mathcal{B}_i is nonempty.

N-Uniform Boundedness. [*N-UB*] For all $z \in X$, $p_i(z, X) > \gamma_i \cdot \boldsymbol{p}_{-i}(z, X)$ for some $\gamma_i \in \mathcal{B}_i$ with $\gamma_i \in R_+^{n-1}$.
Characterization

Theorem

Let distinct p_i . Then $(p_1, p_2, ..., p_n)$ has a social interaction representation if and only if n-independence, n-uniform boundedness, and n-nonnegativeness hold. Moreover, $\{w_i, \alpha_i \geq 0\}_{i \in N}$ are uniquely identified.

Negative Interactions

- Fashions and fads
- The choice of a fashion product not only signals which social group you would like to identify with but also signals who you would like to differentiate from (Pesendorfer, '95)
- Among criminals competition for resources governs the need for negative interactions (Glaeser et al, '96)
- Lots of evidence but less theoretical work

Negative Interactions

How to incorporate negative influence: let $\alpha_i \in R$

Negative Interactions

Existence of representation: Not every combination of $(w_1, w_2, \alpha_1, \alpha_2)$ yield a dual interaction representation

Negative Interactions: Characterization

Fairly straightforward:

Let $i \neq j$. For any $S \neq X$, and any $x, y \in S$ for which $x \neq y$, define

$$\gamma_i(x, y, S) \equiv \frac{1}{\beta_i(x, y, S)} = \frac{\frac{d_j(x, S)}{p_i(x, S)} - \frac{d_j(y, S)}{p_i(y, S)}}{\frac{d_i(x, S)}{p_i(x, S)} - \frac{d_i(y, S)}{p_i(y, S)}}$$

Conditional Independence: If p_i does not have a Luce representation, then $\gamma_i(x, y, S)$ is independent of S, x, and y.

Uniform Boundedness: For all $S \neq X$ and $x, y \in S$

$$\gamma_i(x, y, S) \notin \left[\min_{z \in X} \left\{ \frac{p_j(z, X)}{p_i(z, X)} \right\}, \max_{z \in X} \left\{ \frac{p_j(z, X)}{p_i(z, X)} \right\} \right].$$

Negative Interactions: Characterization

Theorem

Let $p_1 \neq p_2$. (p_1, p_2) has a **dual interaction** representation with $\alpha_1, \alpha_2 \in \mathbb{R}$ if and only if it satisfies conditional independence and uniform boundedness. Moreover, $(w_1, w_2, \alpha_1, \alpha_2)$ is uniquely identified.