Engineering Growth

William Maloney Felipe Valencia

World Bank and IZA

VSE, CEPR and IZA

Macro Lunch Vancouver School of Economics

February 3rd, 2021

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Economic Motivation

- Economic importance of technology and innovation
- Large theoretical literature stressing the important role of human capital for long term growth
- Surprisingly hard to document empirically
 - Specific types of human capital
 - Endogeneity and reverse causality
 - Lack of historical data, especially at the sub-national level

Contributions

- New data set on early domestic innovative capacity in the Americas: engineers and patents
 - National and sub-national (state and county) levels
- Show the long-term impact of early (Second Industrial Revolution) investments in advanced human capital on modern day income
 - Complementary to basic literacy and other human capital variables
 - Robust to controls and IV estimation
- Tease out the contributions of innovation through patents vs. adoption via engineers
- Explore mechanisms of influence: technological adoption and entrepreneurship (structural transformation)

イロト イポト イヨト イヨト

Key Findings

Upper tails of knowledge matter for long-run growth:

- One standard deviation in engineering density (instrumented) in 1880 accounts for a 10-15% increase in US county income today
- One standard deviation in historical patenting activity contributes another 10%
- Could explain up to a third of the Great Divergence in the Americas during the key period of the Second Industrial Revolution

イロト イタト イヨト イヨト

Introduction

National Engineering Density: Historically

5 / 39

Relevant Literature

- Human Capital and Growth: Nelson and Phelps (1966), Lucas (1988), Romer (1990), Baumol (1990), Murphy et al. (1991), Mankiw et al. (1992), Aghion and Howitt (1997), Barro (2001), Galor and Moav (2006), Benhabib and Spiegel (2005), Galor (2011)
 - Long theoretical tradition and seminal empirical pieces
- Empirical Studies: Acemoglu and Angrist (2000), Krueger and Lindahl (2001), Aghion et al. (2009), Goldin and Katz (2009), Gennaioli et al. (2013), Kantor and Whalley (2014 and 2019), Castelló-Climent et al. (2016), Toivanen and Väänänen (2016), Freeman and Salzman (2018)
 - Inconclusive empirical results: causality, basic literacy / years of schooling, secondary vs. tertiary, lawyers vs. engineers?
- Historically: Mariscal and Sokoloff (2000), Meisenzahl and Mokyr (2011), Becker at al. (2011), Waldinger (2012), Squicciarini and Voigtländer (2014), Yutchman (2014), Hornung (2014), De la Croix et al. (2015), Cinnirella and Streb (2017), Akcigit et al. (2017)
 - Upper tails of knowledge during the Second Industrial Revolution

Historical Background

- Second Industrial Revolution (1870-1914): a period of intense technological change (Mokyr, 1998 and Gordon, 2016)
 - "trained engineers, capable mechanics and dexterous craftsmen on whose shoulders inventors could stand." Mokyr (2005)
- Northern leadership in engineering training
 - 1800s: West Point, Norwich, New York
 - First professional societies in 1850-1870
- Southern schools developed later and were partly encouraged by the Morrill Land Grand Act in 1862 and 1890 (used as instrument)
- Later, weaker and less specialized in Latin America
 - Argentina (1870) and Peru (1880)
 - Colombia and Mexico: political instability (country fixed effects)

イロト イポト イヨト イヨト

- Engineering Density: Domestic engineers per 100,000 male workers in 1900
 - Engineering graduates, engineering societies and census data for eleven countries in the Americas
 - State level for Argentina, Chile, Colombia, Mexico, Venezuela and the US
 - County level for the the US (1880)
- Patents: US Patent and Trademark Office (USPTO) at the county level
- Sub-national Income: World Bank (2009) and US Census (2000)
 - Education Controls: Literacy, secondary schooling, college, lawyers, physicians
 - Historical Controls: Population density, railroads, mining, manufacturing output, slavery, total acres in agriculture, religion, foreigners
 - Geographic and Weather Controls: Temperature, altitude, rainfall, agricultural suitability, river density, distance to coast, ruggedness

イロト イポト イヨト イヨト

Sub-national Engineering Density

US and Mexico

(日) (四) (日) (日) (日)

Data

Summary Statistics US County Level

Variable	mean	p50	\mathbf{sd}	min	max	Obs
Ln Income	10.043	10.032	0.219	9.165	11.360	1905
Engineers	0.022	0.000	0.038	0.000	0.299	1905
Patents	0.453	0.274	0.602	0.000	6.041	1905
Ln LGC distance	0.176	0.281	0.683	-5.450	1.765	1905
Rainfall	0.077	0.076	0.042	0.009	0.393	1905
Altitude	0.025	0.023	0.019	0.000	0.175	1905
Ruggedness	0.005	0.003	0.006	0.000	0.043	1905
Distance to river	0.017	0.014	0.014	0.000	0.141	1905
Average Temperature	-0.002	-0.006	0.061	-0.160	0.188	1905
Dist. from Coast	0.027	0.023	0.020	0.000	0.102	1905
Population Density	0.003	0.001	0.049	0.000	2.055	1905
Manufacturing GDP	0.042	0.018	0.066	0.000	0.576	1905
Slavery	0.153	0.019	0.215	0.000	0.925	1905
Railroads	0.584	1.000	0.493	0.000	1.000	1905
Literacy	0.759	0.829	0.203	0.151	1.000	1905
School Assistance 12-17	0.051	0.055	0.018	0.000	0.090	1905
Educational Score	0.073	0.073	0.019	0.035	0.168	1905
Lawyers	0.001	0.001	0.001	0.000	0.005	1905
Physicians	0.002	0.002	0.001	0.000	0.004	1905

▶ State Level

Estimating Equations

 $Y_{2000,ij} = \alpha + \beta Eng_{1900,ij} + \gamma Geo_{1900,ij} + \lambda ED_{1900,ij} + \lambda HI_{1900,ij} + \mu_j + \epsilon_{ij}$ (1)

Data

- *Y* : Income (county i state j)
- Eng: Engineering density (plus patents later)
- Pat: Patents
- Geo: Geographic controls
- ED: Education controls
- HI: Historic Controls
- μ : State-fixed effect
- ϵ : Error term

イロト イタト イヨト イヨト

Innovative Capacity and Income

US Counties

	(1) OLS	(2) OLS	(3) OLS	(4) OLS	(5) OLS	(6) OLS	(7) OLS	(8) OLS
Engineers	0.224^{***}	0.289***	0.188***	0.147^{***}	0.184^{***}	0.118***	0.112***	0.0938***
	(0.03)	(0.04)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
Rainfall	(0.0203	(0.0320	(0.07)	(0.0001	(0.0230	(0.00)	(0.0020	(0.08)
Altitude	-0.00325	-0.0195	0.0335	0.00472	0.0418	0.06)	-0.0108	-0.0716
, Horotado	(0.03)	(0.08)	(0.07)	(0.08)	(0.07)	(0.07)	(0.07)	(0.06)
Ruggedness	-0.0817	-0.0813	-0.104	-0.0295	-0.115	-0.0780	-0.0342	-0.0193
00	(0.08)	(0.1)	(0.09)	(0.09)	(0.09)	(0.08)	(0.08)	(0.08)
River Dist.	0.0236	0.0148	0.0220	0.0187	0.0187	0.0352	0.0296	0.0293
	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
Temperature	-0.281***	-0.310***	-0.124**	-0.0113	-0.0781	-0.131*	-0.0361	-0.0784
Const Dist	(0.05)	0.026***	(0.06)	(0.05)	(0.06)	(0.07)	0.120***	(0.2)
Coast Dist.	(0.05)	(0.05)	(0.05)	(0.05)	(0.05)	(0.05)	(0.05)	(0.09)
Pop. Density	(0.00)	(0.00)	0.0930***	0.0952***	0.0934***	0.0831***	0.0896***	0.0993***
			(0.007)	(0.007)	(0.007)	(0.009)	(0.008)	(0.008)
Manuf. Output			0.193***	0.173***	0.212^{***}	0.169 * * *	0.161***	0.122***
			(0.04)	(0.03)	(0.04)	(0.04)	(0.03)	(0.04)
Slavery			-0.102	0.179	-0.0419	-0.0216	0.161	0.178 **
			(0.07)	(0.1)	(0.08)	(0.08)	(0.1)	(0.07)
Railroad			0.161***	0.112***	0.144***	0.124***	0.106***	0.0957***
Litoracy			(0.04)	0.463***	(0.03)	(0.03)	0.305***	0.502***
Literacy				(0.1)			(0.1)	(0.07)
Secondary				(0.1)	0.120**		0.00482	0.0374
					(0.05)		(0.05)	(0.05)
Tertiary						0.142^{**}	0.0471	0.0588
						(0.05)	(0.04)	(0.04)
Lawyers						0.131***	0.112***	0.119***
Dhusioiana						0.000277	0.0462	0.0170
1 hysicians						(0.05)	(0.0403	(0.03)
N	2380	1905	1905	1905	1905	1905	1905	1905
R^2	0.188	0.238	0.313	0.362	0.319	0.345	0.371	0.476
FE	No	No	No	No	No	No	No	Yes

◆□> ◆□> ◆三> ◆三> ● 三 のへの

William Maloney Felipe Valencia (WB & UBC)

Patenting Activity

- Direct measure of innovation (Sokoloff, 1988; Khan, 2015; Acemoglu et al., 2013; Perlman 2016; Kuegler 2016; Donges et al. 2016; Akcigit et al. 2017)
- Patents between 1890-1910 normalized by population
- Innovation outside the patent system (Moser, 2013)
 - "Not all inventions are patentable, not all inventions are patented." (Griliches, 1998)
- Institutional environment, innovation vs. adaptation
- Interaction with engineers and independent effect

Engineers and Patents US Counties

	(1)	(2)	(3)	(4)	(5)	(6) OLS	(7)	-
Engineers	0.308***	0.295***	0.188***	0.188***	0.187***	0.124***	0.120***	ł
8	(0.04)	(0.04)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	L
Rainfall		-0.107	-0.192	-0.195	-0.192	-0.134	-0.141	I.
		(0.2)	(0.2)	(0.2)	(0.2)	(0.1)	(0.1)	
Altitude		0.211*	0.215^{**}	0.215^{**}	0.212^{**}	0.217^{**}	0.213^{**}	
		(0.1)	(0.09)	(0.09)	(0.09)	(0.08)	(0.08)	
Ruggedness		-0.184	-0.187*	-0.189^{*}	-0.183*	-0.175^*	-0.181**	
		(0.1)	(0.1)	(0.1)	(0.1)	(0.09)	(0.08)	
River Dist.		-0.0221	0.0283	0.0286	0.0297	0.0323	0.0362	
		(0.05)	(0.04)	(0.04)	(0.04)	(0.03)	(0.03)	
Temperature		-0.0269	-0.00366	-0.00887	-0.0203	0.0183	-0.0519	
		(0.2)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	
Coast Dist.		-0.253^{**}	-0.202^{**}	-0.202**	-0.195^{**}	-0.227***	-0.229***	
		(0.10)	(0.08)	(0.08)	(0.08)	(0.08)	(0.08)	
Pop. Density			0.0182^{**}	0.0182^{**}	0.0183^{**}	0.0103	0.00874	
			(0.008)	(0.008)	(0.008)	(0.007)	(0.007)	
Manuf. Output			0.507***	0.508***	0.495^{***}	0.459^{***}	0.442^{***}	
~			(0.06)	(0.06)	(0.06)	(0.06)	(0.06)	
Slavery			-0.0802^{***}	-0.0854***	-0.0985***	-0.0692^{**}	-0.144***	
			(0.03)	(0.02)	(0.03)	(0.03)	(0.03)	
Railroad			-0.0483	-0.0473	-0.0440	-0.0833***	-0.0734**	
			(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	
Literacy				-0.0128			-0.144 * *	
				(0.04)	0.0070*		(0.06)	
Secondary					-0.0672*		-0.0950**	
m					(0.04)	0.40.088	(0.04)	
Tertiary						0.104**	0.141***	
						(0.04)	(0.04)	
Lawyers						0.203***	0.203***	
D1						(0.06)	(0.05)	
Physicians						-0.00798	0.0181	
N	1005	1005	1005	1005	1005	(0.03)	(0.04)	_
IN D ²	1905	1905	1905	1905	1905	1905	1905	
R [*]	0.316	0.340	0.471	0.471	0.472	0.505	0.511 V-r	
FE	res	res	res	res	res	res	res	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

William Maloney Felipe Valencia (WB & UBC)

Patents and Income

US Counties

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	ÒLS	OLS	OLS	ÒLS	OLS	OLS	OLS	ÒLS
Patents	0.129^{***}	0.317^{***}	0.203^{***}	0.167^{***}	0.204^{***}	0.115^{***}	0.125^{***}	0.114^{***}
	(0.04)	(0.05)	(0.05)	(0.04)	(0.05)	(0.04)	(0.04)	(0.04)
Rainfall	0.0357	0.0438	0.0353	0.0607	0.0339	0.0775	0.0860	0.142
	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.08)	(0.08)
Altitude	0.0340	-0.0734	-0.00734	-0.0306	0.00126	-0.00613	-0.0370	-0.0964
	(0.04)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.06)
Ruggedness	-0.0738	-0.0161	-0.0506	0.0161	-0.0628	-0.0477	-0.00177	0.00274
	(0.08)	(0.10)	(0.09)	(0.08)	(0.08)	(0.08)	(0.08)	(0.07)
River Dist.	0.0265	0.0160	0.0243	0.0205	0.0206	0.0371	0.0306	0.0268
	(0.04)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
Temperature	-0.264^{***}	-0.271^{***}	-0.114^{*}	-0.00204	-0.0633	-0.124*	-0.0248	-0.0681
	(0.06)	(0.04)	(0.06)	(0.05)	(0.06)	(0.07)	(0.07)	(0.2)
Coast Dist.	-0.212^{***}	-0.200***	-0.154^{***}	-0.115^{**}	-0.161^{***}	-0.169^{***}	-0.119^{**}	-0.0537
	(0.06)	(0.05)	(0.05)	(0.05)	(0.05)	(0.05)	(0.05)	(0.09)
Pop. Density			0.0912^{***}	0.0937^{***}	0.0916^{***}	0.0820^{***}	0.0889^{***}	0.0983^{***}
			(0.007)	(0.006)	(0.007)	(0.008)	(0.007)	(0.008)
Manuf. Output			0.150^{***}	0.134^{***}	0.169^{***}	0.148^{***}	0.135^{***}	0.0886^{**}
			(0.04)	(0.04)	(0.04)	(0.04)	(0.04)	(0.04)
Slavery			-0.0946	0.195^{*}	-0.0256	-0.0184	0.175	0.189^{**}
			(0.08)	(0.1)	(0.08)	(0.08)	(0.1)	(0.07)
Railroad			0.182^{***}	0.128^{***}	0.163***	0.137^{***}	0.117^{***}	0.106^{***}
			(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.02)
Literacy				0.476***			0.408***	0.512^{***}
				(0.1)			(0.1)	(0.07)
school 12-17					0.136^{**}		0.0147	0.0448
					(0.05)		(0.05)	(0.05)
edscor						0.142^{***}	0.0397	0.0533
						(0.05)	(0.04)	(0.04)
Lawyers						0.137***	0.113***	0.117***
						(0.04)	(0.04)	(0.04)
Physicians						-0.00144	-0.0496	0.0152
-						(0.04)	(0.04)	(0.03)
N	2382	1905	1905	1905	1905	1905	1905	1905
R^2	0.158	0.246	0.309	0.362	0.316	0.342	0.370	0.476
FE	No	Vee						

Innovative Capacity and Income

US Counties: Engineers and Patents

				-
	(1) OLS	(2) OLS	(3) OLS	(4)
Engineers	015	015	0.0050***	0.0817***
Linginocity			(0.03)	(0.02)
Patents	0.125***	0.114***	0.105**	0.101***
1 10001107	(0.04)	(0.04)	(0.04)	(0.04)
Bainfall	0.0860	0.142	0.0815	0.145*
	(0.08)	(0.08)	(0.07)	(0.08)
Altitude	-0.0370	-0.0964	-0.0359	-0.0932
	(0.07)	(0.06)	(0.08)	(0.06)
Ruggedness	-0.00177	0.00274	-0.0115	-0.000973
	(0.08)	(0.07)	(0.08)	(0.07)
River Dist.	0.0306	0.0268	0.0276	0.0256
	(0.03)	(0.03)	(0.02)	(0.03)
Temperature	-0.0248	-0.0681	-0.0385	-0.0731
•	(0.07)	(0.2)	(0.06)	(0.2)
Coast Dist.	-0.119**	-0.0537	-0.118**	-0.0493
	(0.05)	(0.09)	(0.05)	(0.09)
Pop. Density	0.0889^{***}	0.0983^{***}	0.0891***	0.0985^{***}
	(0.007)	(0.008)	(0.008)	(0.008)
Manuf. Output	0.135^{***}	0.0886^{**}	0.119***	0.0770^{*}
	(0.04)	(0.04)	(0.04)	(0.04)
Slavery	0.175	0.189^{**}	0.174	0.193^{***}
	(0.1)	(0.07)	(0.1)	(0.07)
Railroad	0.117^{***}	0.106^{***}	0.114^{***}	0.103^{***}
	(0.03)	(0.02)	(0.03)	(0.02)
Literacy	0.408^{***}	0.512^{***}	0.401***	0.516^{***}
	(0.1)	(0.07)	(0.1)	(0.07)
Secondary	0.0147	0.0448	0.0148	0.0470
	(0.05)	(0.05)	(0.05)	(0.05)
Tertiary	0.0397	0.0533	0.0290	0.0446
	(0.04)	(0.04)	(0.04)	(0.04)
Lawyers	0.113^{***}	0.117^{***}	0.0916^{**}	0.0986^{***}
	(0.04)	(0.04)	(0.04)	(0.03)
Physicians	-0.0496	0.0152	-0.0441	0.0161
	(0.04)	(0.03)	(0.04)	(0.03)
N	1905	1905	1905	1905
R^2	0.370	0.476	0.376	0.480
FE	No	Yes	No	Yes
F statistical (robust)				
F statistical (robust and cluster)				
F Cragg-Donald				

(日) (四) (日) (日) (日)

Instrumental Variable

- Land Grant Colleges (Card, 2001; Moretti, 2004; Cantoni and Yutchman, 2014; Toivanen and Väänänen, 2016)
- 1862 Morrill Land Grand Act
 - Columbia School of Mines, Worcester Polytechnic Institute, Dartmouth, Cornell
 - "Promoted the emergence of the most effective engineering schools in the globe." (Nevins et al., 1962)
 - "Provided the foundation, both in training and in number, for twentieth-century American professional engineering." (Nienkamp, 2010)
- Second Wave in 1890
 - Western, Midwestern and Southern schools (used as placebo)
- Supply driven
 - Low student demand (Johnson, 1981)

イロト イロト イヨト イヨト

US Land Grant Colleges

1872 and 1890

Source: National Academy of Sciences and Engineering

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Land Grant Colleges and Early Manufacturing

US Counties: Manufacturing in 1850

	Value of products	Employed	Capital Invested	Value of homemade
		in	manufacturing	
A Depend	ont variable is the	variable in t	he column	
Instrument	4000 A	7 018	13605 /	1914.5
mstrument	(57112.1)	(54.1)	(29818.3)	(756.0)
Ν	1388	1388	1388	1384
R^2	0.730	0.694	0.603	0.361
Controls	Yes	Yes	Yes	Yes
B. Depende	ent variable is the	variable in t	he column per cap	bita
Instrument	0.571	-0.000576	-0.531	-0.0516
	(1.6)	(0.0009)	(0.4)	(0.03)
N	1388	1388	1388	1384
R^2	0.079	0.256	0.441	0.481
Controls	Yes	Yes	Yes	Yes

・ロト ・ 日 ト ・ 日 ト ・ 日

First Stage: Engineers on Land Grant Colleges US Counties: 1862 and 1890 Waves

	Engineers	Lawyers	Physicians
A. Linear regression			
Distance LGC 1862	-0.103***	-3.18e-05	0.0120
	(0.0370)	(2.74e-05)	(0.0417)
Observations	1,905	1,905	1,905
R-squared	0.011	0.003	0.000
Distance LGC 1890	-0.0461	7.85e-06	0.0344
	(0.0348)	(2.74e-05)	(0.0405)
Observations	1,905	1,905	1,905
R-squared	0.002	0.000	0.001

Innovative Capacity and Income

US Counties: Instrumented

	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	OLS	OLS	IV
Engineers			0.0959^{***}	0.0817***	0.111***
-			(0.03)	(0.02)	(0.03)
Patents	0.125^{***}	0.114^{***}	0.105^{**}	0.101^{***}	0.120^{***}
	(0.04)	(0.04)	(0.04)	(0.04)	(0.04)
Rainfall	0.0860	0.142	0.0815	0.145^{*}	0.145^{*}
	(0.08)	(0.08)	(0.07)	(0.08)	(0.08)
Altitude	-0.0370	-0.0964	-0.0359	-0.0932	-0.105*
	(0.07)	(0.06)	(0.08)	(0.06)	(0.05)
Ruggedness	-0.00177	0.00274	-0.0115	-0.000973	-0.00529
	(0.08)	(0.07)	(0.08)	(0.07)	(0.07)
River Dist.	0.0306	0.0268	0.0276	0.0256	0.0310
	(0.03)	(0.03)	(0.02)	(0.03)	(0.03)
Temperature	-0.0248	-0.0681	-0.0385	-0.0731	-0.0507
	(0.07)	(0.2)	(0.06)	(0.2)	(0.2)
Coast Dist.	-0.119^{**}	-0.0537	-0.118^{**}	-0.0493	-0.0411
	(0.05)	(0.09)	(0.05)	(0.09)	(0.09)
Pop. Density	0.0889^{***}	0.0983***	0.0891^{***}	0.0985^{***}	0.0946^{***}
	(0.007)	(0.008)	(0.008)	(0.008)	(0.008)
Manuf. Output	0.135^{***}	0.0886^{**}	0.119^{***}	0.0770^{*}	0.0829^{*}
	(0.04)	(0.04)	(0.04)	(0.04)	(0.04)
Slavery	0.175	0.189^{**}	0.174	0.193^{***}	0.175^{***}
	(0.1)	(0.07)	(0.1)	(0.07)	(0.07)
Railroad	0.117^{***}	0.106^{***}	0.114^{***}	0.103^{***}	0.189^{***}
	(0.03)	(0.02)	(0.03)	(0.02)	(0.04)
Literacy	0.408^{***}	0.512^{***}	0.401^{***}	0.516^{***}	0.509^{***}
	(0.1)	(0.07)	(0.1)	(0.07)	(0.07)
Secondary	0.0147	0.0448	0.0148	0.0470	0.0285
	(0.05)	(0.05)	(0.05)	(0.05)	(0.05)
Tertiary	0.0397	0.0533	0.0290	0.0446	0.0502
	(0.04)	(0.04)	(0.04)	(0.04)	(0.04)
Lawyers	0.113^{***}	0.117^{***}	0.0916^{**}	0.0986***	0.112^{***}
	(0.04)	(0.04)	(0.04)	(0.03)	(0.04)
Physicians	-0.0496	0.0152	-0.0441	0.0161	0.0127
	(0.04)	(0.03)	(0.04)	(0.03)	(0.03)
N	1905	1905	1905	1905	1905
R^2	0.370	0.476	0.376	0.480	
FE	No	Yes	No	Yes	Yes
F statistical (robust)					14.023
F statistical (robust and cluster)					7.755
F Cragg-Donald					20.34
				< □	1 ▶ ∢ 🗗

William Maloney Felipe Valencia (WB & UBC)

Innovative Capacity and Income: Spillovers

US Counties: Instrumented Excluding LCGs Counties

	(1)	(2)	(3)	(4)	(5)
	OLS	OLS	OLS	OLS	IV
Engineers			0.0950***	0.0801***	0.111***
			(0.0266)	(0.0242)	(0.0311)
Patents	0.121^{***}	0.108^{**}	0.102	0.0996	0.115
	(0.0441)	(0.0404)	(0.0419)	(0.0385)	(0.0388)
Rainfall	0.0861	0.145^{*}	0.0815	0.146^{*}	0.147^{*}
	(0.0769)	(0.0849)	(0.0753)	(0.0816)	(0.0844)
Altitude	-0.0345	-0.0958	-0.0352	-0.0945	-0.106*
	(0.0743)	(0.0601)	(0.0765)	(0.0639)	(0.0548)
Ruggedness	-0.00321	0.00218	-0.0108	-0.000102	-0.00695
	(0.0769)	(0.0694)	(0.0795)	(0.0740)	(0.0682)
River Dist.	0.0324	0.0275	0.0293	0.0265	0.0340
	(0.0262)	(0.0266)	(0.0248)	(0.0262)	(0.0275)
Temperature	-0.0246	-0.0720	-0.0375	-0.0770	-0.0519
	(0.0659)	(0.161)	(0.0620)	(0.161)	(0.153)
Coast Dist.	-0.120**	-0.0539	-0.119**	-0.0490	-0.0365
	(0.0493)	(0.0870)	(0.0486)	(0.0868)	(0.0863)
Pop. Density	0.0904***	0.0988***	0.0905***	0.0988***	0.0940***
	(0.00758)	(0.00792)	(0.00793)	(0.00826)	(0.00855)
Manuf. Output	0.134***	0.0910*	0.116**	0.0794*	0.0836*
	(0.0458)	(0.0455)	(0.0455)	(0.0436)	(0.0441)
Slavery	0.177	0.187**	0.177	0.190***	0.172^{**}
	(0.113)	(0.0693)	(0.112)	(0.0684)	(0.0669)
Railroad	0.114***	0.103***	0.111***	0.100***	0.0925***
	(0.0297)	(0.0201)	(0.0299)	(0.0200)	(0.0198)
Literacy	0.414^{***}	0.516***	0.407***	0.520***	0.511***
	(0.105)	(0.0721)	(0.106)	(0.0726)	(0.0710)
Secondary	0.0185	0.0452	0.0186	0.0474	0.0246
	(0.0537)	(0.0527)	(0.0526)	(0.0518)	(0.0547)
Tertiary	0.0352	0.0486	0.0252	0.0401	0.0507
	(0.0414)	(0.0378)	(0.0425)	(0.0382)	(0.0361)
Lawyers	0.111^{***}	0.115^{***}	0.0902**	0.0971^{***}	0.112^{***}
	(0.0399)	(0.0357)	(0.0386)	(0.0339)	(0.0375)
Physicians	-0.0493	0.0126	-0.0440	0.0135	0.0126
	(0.0394)	(0.0301)	(0.0391)	(0.0301)	(0.0292)
Constant	-0.00538	-0.00528^{***}	-0.00487	-0.00477***	0.00107***
	(0.0544)	(0.000787)	(0.0542)	(0.000816)	(0.000230)
Observations	1.879	1.879	1.879	1.879	1.879
D sequenced	0.268	0.484	0.274	0.488	1,012
EE	No	Ves	No	Vec	Vee
1.1.7	140	105	140	169	169

William Maloney Felipe Valencia (WB & UBC)

イロト イロト イヨト イヨト

Innovative Capacity and Income: Placebo

US Counties: Instrumented 1890 Wave

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	OLG	OLE	OLS	OLS	OLS	OLS	016	016
LGC1890dist_centroid_In	-0.00751	-0.0613	-0.0409	-0.0193	-0.0212	-0.0162	-0.0157	-0.0174
	(0.05)	(0.04)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
Rainfall		0.0404	0.0585	0.0354	0.0178	0.0358	0.0470	0.0407
		(0.07)	(0.05)	(0.05)	(0.03)	(0.04)	(0.05)	(0.05)
Altitude		0.198	0.0406	0.102	0.0799	0.106	0.0477	0.0416
		(0.06)	(0.09)	(0.09)	(0.07)	(0.09)	(0.09)	(0.09)
Ruggedness		0.00982	0.0962*	0.0185	0.0675*	0.0126	0.0454	0.0566
		(0.07)	(0.05)	(0.05)	(0.04)	(0.05)	(0.05)	(0.06)
River Dist.		0.0170	0.0174	0.0119	0.00938	0.0100	0.0369	0.0365
		(0.04)	(0.04)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
Temperature		-0.00278	-0.0516	0.196*	0.267	0.221*	0.148	0.156
		(0.08)	(0.08)	(0.1)	(0.1)	(0.1)	(0.10)	(0.1)
Coast Dist.		-0.182	-0.159**	-0.0486	-0.0206	-0.0521	-0.0454	-0.0364
		(0.05)	(0.07)	(0.05)	(0.04)	(0.05)	(0.05)	(0.05)
Pop. Density				0.0151	0.0161	0.0153	-0.00217	-0.00122
				(0.02)	(0.02)	(0.02)	(0.01)	(0.02)
Manuf. Output				0.346***	0.324	0.357***	0.266	0.260***
				(0.04)	(0.04)	(0.05)	(0.03)	(0.04)
Slavery				-0.156**	0.0365	-0.121**	-0.0450	-0.0209
				(0.07)	(0.04)	(0.06)	(0.04)	(0.04)
Railroad				0.0732**	0.0383	0.0640**	0.0166	0.0152
				(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
Literacy					0.311 ***			0.0735
					(0.07)			(0.05)
school 12-17						0.0678		-0.0243
						(0.07)		(0.05)
edscor							0.167***	0.153
							(0.05)	(0.05)
Lawyers							0.276	0.272***
							(0.05)	(0.05)
Physicians							-0.0593	-0.0637
							(0.05)	(0.05)
N	2471	2471	1905	1905	1905	1905	1905	1905
R ²	-0.000	0.080	0.038	0.169	0.191	0.170	0.264	0.264

William Maloney Felipe Valencia (WB & UBC)

 Image: Non-State
 Image: Non-State

(日) (四) (日) (日) (日)

Innovative Capacity and Income: Sub-national Regressions

Americas: Fixed Effects

	(1)	(2)	(3)	(4)	(5)	(6)
Engineering	0.1^{***}	0.1^{***}	0.07^{***}	0.10^{***}	0.1^{***}	0.05^{**}
	(0.04)	(0.03)	(0.02)	(0.03)	(0.02)	(0.02)
Pop Density		0.07^{**}	0.06^{***}		0.1^{***}	0.06^{***}
		(0.03)	(0.02)		(0.04)	(0.01)
Literacy			0.4^{***}			0.4^{***}
			(0.13)			(0.10)
Area				-0.03	0.08	-0.04
				(0.06)	(0.05)	(0.04)
Ruggedness				-0.03	-0.06	-0.04*
				(0.05)	(0.04)	(0.02)
Rainfall				-0.1*	-0.1	-0.09
				(0.06)	(0.08)	(0.06)
Altitude				-0.03	-0.07	-0.03
				(0.05)	(0.06)	(0.05)
Landlocked				-0.02	-0.003	-0.02
				(0.03)	(0.02)	(0.04)
Constant	0.6	0.6	0.6^{**}	0.5	0.5	0.6**
	(0.42)	(0.40)	(0.28)	(0.39)	(0.37)	(0.23)
Ν	170	166	166	160	156	156
N Countries	6	6	6	6	6	6
R^2	0.11	0.18	0.37	0.19	0.29	0.48

(日) (四) (日) (日) (日)

Mechanisms of Influence

- Structural transformation (cf. Fiszbein 2014; Kantor and Whalley 2019)
 - Intermediate historical outcomes (1860-1940)
- Technological adoption: horsepower in manufacturing
- Entrepreneurship: Murphy et al. (1991)
 - Number of retail stores
- Technology adoption and mechanization in agriculture (Skinner and Staiger, 2007)
- High-tech sector (CBP 2012) and Knowledge Intensive Business Services (KIBS)

Cross Country

イロト イポト イヨト イヨト

Mechanisms of Influence: Manufacturing 1860-1940

Manufacturing Value Added

William Maloney Felipe Valencia (WB & UBC)

(日)

Mechanisms of Influence

Technological Adoption and Entrepreneurship in 1930

	(1)	(2)	(3)	(4)	(5)
	Value manuf.	Horsepower	Establishment	Retail stores	Wholesale sales
	per capita	in manuf.	per capita	per capita	per capita
Engineers	0.0688**	0.0464^{**}	0.0611^{**}	0.0794^{**}	0.0937***
	(0.0258)	(0.0214)	(0.0271)	(0.0344)	(0.0298)
Rainfall	0.120	0.357***	0.0722	-0.0960	-0.127
	(0.136)	(0.106)	(0.155)	(0.136)	(0.0912)
Altitude	0.120*	0.0837*	0.156**	0.110	0.136**
	(0.0592)	(0.0465)	(0.0739)	(0.0854)	(0.0608)
Ruggedness	-0.113*	0.0954**	-0.161*	-0.141	-0.264**
	(0.0657)	(0.0444)	(0.0801)	(0.106)	(0.0998)
River Dist.	-0.00689	-0.0422*	0.0168	0.0175	0.0185
	(0.0201)	(0.0222)	(0.0248)	(0.0229)	(0.0236)
Temperature	0.0722	0.00190	0.257	0.257*	0.152
	(0.144)	(0.135)	(0.174)	(0.148)	(0.119)
Coast Dist.	-0.209***	-0.128	-0.334***	-0.233***	-0.0133
	(0.0657)	(0.0807)	(0.0903)	(0.0660)	(0.0923)
Pop. Density	-0.0439***	-0.0998***	-0.00397	-0.0378***	0.0206***
	(0.0128)	(0.0194)	(0.00937)	(0.0122)	(0.00737)
Manuf. Output	0.296***	0.243***	0.254***	0.155***	0.207***
	(0.0471)	(0.0394)	(0.0472)	(0.0471)	(0.0411)
Slavery	-0.222***	-0.0139	-0.498***	-0.514***	-0.206***
	(0.0387)	(0.0542)	(0.0455)	(0.0508)	(0.0520)
Railroad	0.0838***	0.112***	-0.0319	-0.0540	0.00231
	(0.0276)	(0.0245)	(0.0358)	(0.0418)	(0.0330)
Farms per capita	-0.0668*	-0.0791**	-0.000692	0.00544	-0.102*
	(0.0359)	(0.0337)	(0.0344)	(0.0426)	(0.0600)
Literacy	0.0333	0.0663	-0.158*	-0.199**	-0.116
	(0.0630)	(0.0534)	(0.0847)	(0.0978)	(0.0734)
Secondary	-0.176***	-0.0923**	-0.189***	-0.190***	-0.129**
	(0.0409)	(0.0424)	(0.0502)	(0.0609)	(0.0477)
Tertiary	0.128***	0.0192	0.137**	0.137***	0.195***
	(0.0354)	(0.0340)	(0.0540)	(0.0429)	(0.0391)
Lawyers	0.173***	-0.0204	0.200***	0.248***	0.263***
	(0.0365)	(0.0337)	(0.0376)	(0.0389)	(0.0471)
Physicians	-0.0377	-0.0277	-0.0504	-0.0665	-0.0364
	(0.0343)	(0.0331)	(0.0365)	(0.0446)	(0.0402)
Observations	1.745	1.722	1.745	1.884	1.761
R-squared	0.490	0.514	0.486	0.470	0.419
FE	Yes	Yes	Yes	Yes	Yes

William Maloney Felipe Valencia (WB & UBC)

(日) (日) (日) (日) (日)

Heterogeneous Effects: Structural Transformation

US Counties: Lawyers and Farms

	(1)	(2)	(4)	(5)	(7)	(8)	(10)	(11)
		La	wyers			Agric	ulture	
	B	elow	A	.bove	E	lelow	A	bove
	OLS	IV	OLS	IV	OLS	IV	OLS	IV
	0.000088	0.000088	0.0049444	0.110111	0.0001444	0.117.848	0.00105	0.0048
Engineers	(0.0000)	0.0870**	0.0647****	(0.0000)	0.0961***	0.115****	0.00567	0.0347
D 1 6 B	(0.0390)	(0.0381)	(0.0236)	(0.0330)	(0.0267)	(0.0421)	(0.0214)	(0.0332)
Kamfall	0.0170	0.0579	(0.0000)	(0.130	(0.00000)	(0.0000)	0.0434	0.0615
A1070 1	(0.137)	(0.128)	(0.0959)	(0.102)	(0.0907)	(0.0799)	(0.0840)	(0.105)
Altitude	0.0549	0.0373	-0.161**	-0.168****	-0.146***	-0.143	0.0928	0.0853
Deservation	(0.0679)	(0.0712)	(0.0605)	(0.0546)	(0.0569)	(0.0447)	(0.0729)	(0.0705)
Ruggedness	-0.0607	-0.0637	0.0124	0.00723	0.0323	0.0212	-0.0767	-0.0917
	(0.0824)	(0.0879)	(0.106)	(0.103)	(0.101)	(0.0869)	(0.0635)	(0.0752)
River Dist.	0.0215	0.0341	0.00922	0.00947	0.0313	0.0395	0.00927	0.0119
	(0.0398)	(0.0445)	(0.0283)	(0.0278)	(0.0400)	(0.0397)	(0.0264)	(0.0287)
Temperature	-0.0335	-0.0259	-0.143	-0.132	-0.0638	-0.0361	-0.0635	-0.0676
	(0.211)	(0.204)	(0.120)	(0.125)	(0.179)	(0.156)	(0.128)	(0.145)
Coast Dist.	-0.182	-0.166	-0.00269	0.0109	-0.125	-0.0914	-0.0826	-0.0871
	(0.114)	(0.104)	(0.0751)	(0.0862)	(0.110)	(0.0774)	(0.0923)	(0.110)
Pop. Density	6.653*	0.179^{**}	0.0973***	0.135^{***}	0.0871***	0.107^{***}	25.57***	0.339^{***}
	(3.439)	(0.0890)	(0.0103)	(0.0151)	(0.0115)	(0.0146)	(4.853)	(0.0650)
Manuf. Output	0.0754	0.0589	0.00545	0.0114	0.0285	0.0193	0.166**	0.0729^{**}
	(0.0688)	(0.0671)	(0.0560)	(0.0636)	(0.0434)	(0.0556)	(0.0683)	(0.0287)
Slavery	0.134^*	0.135^{*}	0.354^{***}	0.261^{***}	0.247**	0.246^{**}	0.122*	0.105*
	(0.0671)	(0.0786)	(0.0723)	(0.0543)	(0.111)	(0.120)	(0.0669)	(0.0586)
Railroad	0.0633^{**}	0.0528*	0.135^{***}	0.128^{***}	0.116^{***}	0.0845***	0.0592^*	0.0675^{*}
	(0.0243)	(0.0272)	(0.0291)	(0.0268)	(0.0299)	(0.0237)	(0.0292)	(0.0358)
Farms per capita	0.0896*	0.0495	-0.0349	-0.0651	-0.0241	-0.0589	0.0129	0.00840
	(0.0514)	(0.0418)	(0.0388)	(0.0465)	(0.0678)	(0.0406)	(0.0230)	(0.0179)
Literacy	0.557^{***}	0.574^{***}	0.445^{***}	0.360***	0.519^{***}	0.516^{***}	0.324^{***}	0.350^{***}
	(0.105)	(0.108)	(0.0867)	(0.0696)	(0.141)	(0.136)	(0.0666)	(0.0694)
Secondary	0.0478	0.0393	0.0131	0.00723	-0.00427	-0.00890	0.00596	0.00227
	(0.0629)	(0.0728)	(0.0559)	(0.0495)	(0.0705)	(0.0649)	(0.0449)	(0.0512)
Tertiary	-0.0130	-0.00591	0.0749	0.0624	0.0392	0.0348	-0.0211	-0.0222
	(0.0409)	(0.0373)	(0.0547)	(0.0460)	(0.0610)	(0.0520)	(0.0497)	(0.0556)
Lawyers	0.206***	0.0865***	0.0803**	0.0826**	0.200***	0.207***	-0.0292	-0.0302
	(0.0727)	(0.0334)	(0.0391)	(0.0372)	(0.0525)	(0.0552)	(0.0360)	(0.0375)
Physicians	0.0384	0.0503	0.0137	0.00462	0.0145	0.0102	-0.0187	-0.0219
	(0.0457)	(0.0421)	(0.0325)	(0.0313)	(0.0543)	(0.0478)	(0.0376)	(0.0464)
Patents	-0.000642	0.0155	0.156***	0.200***	0.107***	0.140***	0.182*	0.120*
	(0.0781)	(0.0504)	(0.0348)	(0.0421)	(0.0317)	(0.0370)	(0.0971)	(0.0625)
Constant	0.439***	0.00996*	-0.0268	-0.0242***	-0.0802	-0.0238***	1.175***	0.0191*
	(0.150)	(0.00512)	(0.0618)	(0.00506)	(0.0678)	(0.00668)	(0.240)	(0.0101)
	()	,	()	,)		· ····)	()	
Observations	952	952	952	952	952	952	952	952
R-squared	0.500		0.503		0.553		0.489	
FE	Yes							
	200						- 00	.00

*** p<0.01, ** p<0.05, * p<0.1

William Maloney Felipe Valencia (WB & UBC)

Engineering Growth

VSE Macro Lunch 28 / 39

しい イヨン イヨ

Technology Adoption in Agriculture

Year Hybrid Corn Achieved 10% in the US, by State

A (1) < (2) </p>

Mechanization in Agriculture

Year Tractors Achieved 10% in the US, by State

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Modern Technologies: Computers

% with Computers at Home in 1993 in the US, by State

Adoption of Modern Technologies: Computers

4 A I

High-tech and Knowledge Intensive Sectors

County Business Paterns (2012), KIBS and Ci Technology Database

	(1)	(2) High-tech Se	(3) ectors	(4) Knowledge I	(5) ntensive Busi	(6) ness Sectors	(7) Invest	(8) ments in Tec	(9) bnology
	Payroll	Employment	Establishments	1930	1980	2010	PCs	Servers	IT budget
Engineers	82.87* (44,83)	0.917^{**} (0,43)	0.995^{**} (0,37)	$\begin{array}{c} 0.000762^{***} \\ (0,0002) \end{array}$	0.00137*** (0,0003)	0.000800** (0,0003)	0.0525^{***} (0,017)	$\begin{array}{c} 0.00857^{**} \\ (0,003) \end{array}$	22.40^{***} (7,11)
Observations	1.754	1.754	1.754	1.854	1.799	1.853	1954	1954	1954
R-squared	0,132	0,158	0,192	0,162	0,189	0,195	0,106	0,09	0,084
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

(日) (四) (日) (日) (日)

Historical Case Studies

- Relative Innovative Capacity: Aghion and Howitt (1997), Howitt and Mayer-Foulkes (2005)
 - US South: late industrialization, lack of preparation
 - Birmingham Steel Industry: "You have all the elements, but you cannot make steel." (Carnegie, 1900)
- Latin America: technologically backward, little innovation in industry and agriculture
- Mining: underexploited mines and foreign takeover
 - Mexico: Zacatecas, San Luis de Potosi and Guanajuato
 - Chile: copper industry almost abandoned, turnaround

イロト イワト イヨト イヨト

Copper Production in Chile and Foreign Engineers

William Maloney Felipe Valencia (WB & UBC)

Engineering Growth

VSE Macro Lunch 34 / 39

Enginering Density: New York vs. Antioquia

William Maloney Felipe Valencia (WB & UBC)

ъ

・ ロ ト ・ 同 ト ・ 同 ト ・

Innovation Determinants

- Local versus inherited factors
 - Pre-colonial population density (agglomeration)
 - Slavery and early institutions
- Geographical factors: Cobb (1993)
- Religion (Benabou, Ticchi and Vindigni, 2015)
- Cultural traits and colonial heritage (Alesina et al. 2016, Fulford et al. 2016)
- Immigration (Sequeira, Nunn and Quian, 2107)

イロン イロン イヨン イヨ

Innovation Determinants

US Counties: Foreigners and Religion

	Engineers	Patents
	(1)	(2)
Pop. Density	0.01***	0.2**
	(0.004)	(0.07)
South	-0.010***	-0.1**
	(0.004)	(0.06)
Slavery	-0.02^{***}	-0.6***
	(0.006)	(0.08)
River distance	0.02	-0.3
	(0.09)	(1.3)
Temperature	0.1^{***}	1.3^{*}
	(0.04)	(0.7)
Rainfall	-0.04	-0.6
	(0.06)	(0.8)
Altitude	-0.2	1.3
	(0.1)	(2.7)
Coast Distance	0.04	-3.1***
	(0.06)	(0.9)
Ruggedness	0.7^{**}	-9.5
	(0.3)	(6.0)
Foreigners	0.001^{***}	0.01^{***}
	(0.0002)	(0.003)
Churches	-1.9	-52.7^{***}
	(1.2)	(11.5)
N	1659	1662
R^2	0.220	0.292

(日) (四) (日) (日) (日)

Robustness

- US county level
 - Andrews (2019) college winners and runner ups sub-sample

 Andrews
 - Buchinsky 2SLS quantile regression model, LASSO controls
 - Control for foreigners, religion, total acres in agriculture

 Additional Controls
 - Control for the number of engineers today
 - Predict non-engineering income today: managers
- State level for the US
 - Migration, mining output, geographic controls US States
 - Instrumented US States IV
- State level for the Americas
 - Deflated census numbers, foreign engineers
 - Geographic and institutional controls

イロト イワト イヨト イヨト

Conclusions

- Importance of upper tails of knowledge during the Second Industrial Revolution for long-term growth
 - Engineering density accounts for a 10-15% increase in US county income
 - Patents (uninstrumented) contributes another 10%
 - Helps explain the Great Divergence in the Americas
- Supported by the historical record (Safford 1976, Wright 1986)
- Matters at the cross country, state and county levels
- Importance of both *innovative* and *adoptive* capacity (Mokyr 2005)
- Potentially working through structural transformation, technology adoption and entrepreneurship (Murphy et al., 1991)

イロト イポト イヨト イヨト

Summary Statistics

State Level, Americas

Variable	mean	p50	\mathbf{sd}	min	max	Obs
Ln Income	9.03	8.92	0.91	7.13	11.18	377
Engineers	23.38	11.00	30.08	0.00	84.00	275
Engineers (sub)	82.07	39.68	105.70	0.00	472.59	170
Population Density (1900)	41.06	4.44	243.20	0.00	3319.27	235
Population Density (1500)	8.88	2.00	26.13	0.00	392.34	365
Literacy	40.85	34.00	23.95	11.30	86.70	337
Literacy (sub)	49.06	39.96	30.10	4.60	98.31	175
Railroads	3.15	1.80	2.71	0.30	9.30	377
Railroads (sub)	65.12	48.54	57.46	5.16	309.20	49
south	0.15	0.00	0.36	0.00	1.00	111
Slavery	20.67	3.28	25.16	0.00	72.66	83
Lawyers	218.92	139.22	210.93	1.64	1156.44	114
Mine Output	0.47	0.12	1.06	0.00	6.49	45
Spain	0.81	1.00	0.39	0.00	1.00	390
Land Suitability	0.56	0.58	0.28	0.00	1.00	384
River Density	3.28	3.29	1.23	0.00	6.92	386
Average Temperature	19.97	20.40	5.83	2.38	29.00	332
Rainfall	1.28	1.10	0.95	0.00	8.13	332
Altitude	0.66	0.19	0.92	0.00	4.33	332
Dist. from Coast	0.87	0.91	0.12	0.45	1.00	383
Ruggedness	126.89	99.33	103.53	0.00	474.34	378

Innovative Capacity and Income

US States

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Engineering	0.5^{***}	0.8^{***}	0.4^{***}	0.4^{**}	0.6^{***}	1.2^{***}	1.2^{***}
	(0.15)	(0.15)	(0.14)	(0.18)	(0.11)	(0.40)	(0.33)
Pop Density		0.04^{***}					-0.008
		(0.01)					(0.03)
Literacy			0.003^{*}				0.01
			(0.00)				(0.01)
Lawyers				0.2			-0.2
-				(0.21)			(0.23)
Railroads				· · · ·	0.002^{***}		0.001
					(0.00)		(0.00)
Mining					-14.7		-23.1***
					(10.58)		(7.12)
Slavery					()	-0.0002	Ò.006
						(0.00)	(0.00)
South						-0.004	-0.05
						(0.10)	(0.07)
Constant	10.6***	10.4***	10.4***	10.6***	10.5^{***}	10.6***	9.3***
	(0.02)	(0.06)	(0.15)	(0.07)	(0.03)	(0.06)	(0.91)
N	51	51	51	51	44	38	34
\mathbf{B}^2	0 14	0.40	0.17	0.17	0.47	0.41	0.60
10	0.11	0.40	0.11	0.11	0.11	0.11	0.00

Appendi

Innovative Capacity and Income

US States: Instrumented

	(1)	(2)	(3)	(4)	(5)
Engineering	0.9^{*}	1.6^{***}	0.8^{**}	0.9^{**}	2.1^{**}
	(0.50)	(0.51)	(0.36)	(0.40)	(1.06)
Pop Density		0.07***			Ò.08**
		(0.02)			(0.03)
Literacy			0.002		-0.002
			(0.00)		(0.00)
Lawyers				-0.02	<u>-0.3</u>
				(0.25)	(0.34)
$\operatorname{Constant}$	10.6^{***}	10.3^{***}	10.4^{***}	10.6^{***}	10.5^{***}
	(0.08)	(0.11)	(0.16)	(0.08)	(0.25)
Ν	51	51	51	51	51
\mathbb{R}^2	0.02	0.06	0.09	0.02	

Andrews (2019) Runner Up Colleges

Additional Controls

	(1)	(2)	(3)	(4)	(5)
	OLS	First Stage	First Stage	First Stage	ÌV
		Engineers	Lawyers	Physicians	
Engineers	0.136^{*}				0.623^*
	(0.0695)				(0.362)
Rainfall	-0.140	-0.0671	-0.125	0.0402	-0.110
	(0.100)	(0.177)	(0.100)	(0.0488)	(0.141)
Altitude	-0.787^{**}	0.414	0.644^{***}	0.230^{**}	-0.974^{**}
	(0.331)	(0.363)	(0.233)	(0.0969)	(0.406)
Ruggedness	0.319*	0.0790	-0.0746	-0.0507	0.284
	(0.167)	(0.147)	(0.0959)	(0.0373)	(0.183)
River Dist.	0.721	-1.533	-1.382*	0.175	1.422
	(1.173)	(1.003)	(0.715)	(0.254)	(1.340)
Temperature	0.0992	0.708^{***}	0.368^{***}	0.102^{***}	-0.233
	(0.136)	(0.140)	(0.0854)	(0.0278)	(0.279)
Coast Dist.	-0.0806	0.350^{**}	0.245^{***}	0.162^{***}	-0.241
	(0.101)	(0.144)	(0.0863)	(0.0307)	(0.181)
Pop. Density	-0.368***	-0.115	-0.0298	0.0393***	-0.283***
	(0.0389)	(0.0849)	(0.0391)	(0.0129)	(0.0835)
Manuf. Output	0.0722	0.132	-0.0433	-0.0129	-0.00464
	(0.0625)	(0.0844)	(0.0404)	(0.0146)	(0.0904)
Slavery	0.0556	0.0318	0.241**	0.0602	0.0560
	(0.210)	(0.167)	(0.119)	(0.0432)	(0.215)
Railroad	0.0646	0.109	0.0910*	0.0546***	-0.000860
	(0.107)	(0.0900)	(0.0541)	(0.0205)	(0.118)
Farms per capita	-0.401***	-0.601***	-0.434***	-0.0239	-0.115
	(0.115)	(0.113)	(0.0718)	(0.0262)	(0.254)
Literacy	0.587**	0.499**	0.630***	0.236***	0.362
	(0.245)	(0.229)	(0.158)	(0.0592)	(0.313)
Secondary	-0.299^{*}	0.128	-0.00307	0.00595	-0.350*
	(0.171)	(0.141)	(0.0929)	(0.0402)	(0.191)
LGC 1862		0.0746**	0.00624	0.00487	
		(0.0305)	(0.0144)	(0.00558)	
Observations	202	202	204	204	202
R-squared	0.420	0.469	0.458	0.377	0.267

ъ

・ロト ・個ト ・ヨト ・ヨト

Innovative Capacity and Income

Additional Controls

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	OLS	OLS	OLS	OLS	OLS	OLS	OLS	OLS
Engineers	0.223***	0.291***	0.156***	0.129***	0.150***	0.102***	0.103***	0.0866***
	(0.0370)	(0.0363)	(0.0357)	(0.0315)	(0.0357)	(0.0345)	(0.0322)	(0.0269)
Rainfall		0.0116	0.0199	0.0403	0.0217	0.0538	0.0622	0.145*
		(0.0820)	(0.0694)	(0.0737)	(0.0717)	(0.0679)	(0.0732)	(0.0731)
Altitude		-0.0393	-0.0200	-0.0349	-0.0232	-0.0275	-0.0382	-0.0731
		(0.0940)	(0.109)	(0.109)	(0.108)	(0.104)	(0.104)	(0.0794)
Ruggedness		-0.0299	-0.0364	0.0188	-0.0400	-0.0132	0.00642	-0.0220
		(0.116)	(0.108)	(0.0950)	(0.105)	(0.0926)	(0.0892)	(0.0897)
River Dist.		0.0229	0.0289	0.0186	0.0249	0.0364	0.0272	0.0290
		(0.0294)	(0.0305)	(0.0291)	(0.0286)	(0.0300)	(0.0287)	(0.0265)
Temperature		-0.307***	-0.0854	0.0105	-0.0328	-0.0692	0.00158	0.00253
		(0.0615)	(0.0704)	(0.0580)	(0.0698)	(0.0670)	(0.0651)	(0.154)
Coast Dist.		-0.275***	-0.183***	-0.149**	-0.179***	-0.195***	-0.154***	-0.0615
		(0.0444)	(0.0549)	(0.0611)	(0.0564)	(0.0527)	(0.0556)	(0.0835)
Pop. Density			0.0898***	0.0930***	0.0893***	0.0800***	0.0873***	0.0937***
			(0.00827)	(0.00774)	(0.00843)	(0.0105)	(0.00950)	(0.0111)
Manuf. Output			0.161***	0.154***	0.180***	0.163***	0.160***	0.0996**
			(0.0543)	(0.0478)	(0.0525)	(0.0527)	(0.0492)	(0.0464)
Slavery			-0.115	0.130	-0.0477	-0.0243	0.128	0.182**
			(0.0752)	(0.122)	(0.0874)	(0.0940)	(0.125)	(0.0707)
Railroad			0.140***	0.100***	0.128***	0.117***	0.0935***	0.0800***
			(0.0348)	(0.0325)	(0.0331)	(0.0323)	(0.0313)	(0.0204)
Farms per capita			-0.0148	-0.00504	-0.0148	0.0345	0.0238	0.0241
			(0.0613)	(0.0499)	(0.0607)	(0.0588)	(0.0537)	(0.0457)
Churches per capita			-0.0196	-0.0190	-0.0126	-0.000975	-0.00473	-0.0207
			(0.0443)	(0.0343)	(0.0433)	(0.0386)	(0.0346)	(0.0248)
Foreigners per capita			0.0917	0.0662	0.111	0.107	0.0741	0.134
			(0.0846)	(0.0746)	(0.0854)	(0.0880)	(0.0852)	(0.0869)
Literacy			()	0.406***	()	()	0.335***	0.500***
				(0.111)			(0.108)	(0.0808)
Secondary					0.127**		0.0231	0.0819
-					(0.0604)		(0.0622)	(0.0570)
Tertiary						0.119**	0.0356	0.0696
						(0.0532)	(0.0458)	(0.0448)
Lawyers						0.116***	0.111***	0.124***
*						(0.0403)	(0.0408)	(0.0406)
Physicians						0.0247	-0.0297	0.0419
						(0.0539)	(0.0484)	(0.0320)
Observations	2.380	1.656	1.656	1.656	1.656	1.656	1.656	1.656
R-semared	0.077	0.274	0.345	0.379	0.351	0.371	0.388	0.501
			N	N	N	N	N	

William Maloney Felipe Valencia (WB & UBC)

ъ

Mechanisms of Influence

Cross Country

	All	New World
Inputs		
R&D/GDP	0.94	0.96
Firm Innovative Capacity	0.94	0.94
Modern Management	0.93	0.93
Outrasta		
Outputs	_	
Patents	0.95	0.98
Technological Adoption	0.84	0.94

(日) (四) (日) (日) (日)

Appendi

National Engineering Density

(日) (四) (日) (日) (日)