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Allocation Problem

Designer uses data about an agent to assign her an allocation

Prefers to give higher types higher allocations

Credit: Fair Isaac Corp maps credit behavior to credit score
used to determine loan eligibility, interest rate, . . .

→ Open/close accounts, adjust balances

Web search: Google crawls web sites for keywords & metadata
used to determine site’s search rankings

→ SEO

Online platforms: Amazon sees product reviews
used to determine which products to highlight

→ Fake positive reviews

Given an allocation rule, agent will manipulate data to improve allocation

Manipulation changes inference of agent type from observables
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Response to Manipulation

Allocation rule/policy → agent manipulation →
inference of type from observables → allocation rule

Fixed point policy: best response to itself / Nash eqm

• Rule is ex post optimal given data it induces

• May achieve through adaptive process

Optimal policy: commitment / Stackelberg solution

• Maximizes designer’s objective accounting for manipulation

• Ex ante but (perhaps) not ex post optimal

Our interest:

1 How does optimal policy compare to fixed point?

2 What ex post distortions are introduced?
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Fixed Point vs Optimal (commitment) policy

In our model:

1 How does optimal policy compare to fixed point?
• Optimal policy is flatter than fixed point

Less sensitive to manipulable data

2 What ex post distortions are introduced?
• Commit to underutilize data

Best response would be put more weight on data
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Fixed Point vs Optimal (commitment) policy

Two interpretations of optimally flattening fixed point

Designer with commitment power

• Google search, Amazon product rankings, Government targeting

• Positive perspective or prescriptive advice

Allocation determined by competitive market

• Use of credit scores (lending) or other test scores (college admissions)

• Market settles on ex post optimal allocations

• What intervention would improve accuracy of allocations?
(Govt policy or collusion)
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Related Literature

Framework of “muddled information”
• Prendergast & Topel 1996; Fischer & Verrecchia 2000;

Benabou & Tirole 2006; Frankel & Kartik 2019

• Ball 2020

• Björkegren, Blumenstock & Knight 2020

Related “flattening” to reduce manipulation in other contexts
• Dynamic screening: Bonatti & Cisternas 2019

• Finance: Bond & Goldstein 2015; Boleslavsky, Kelly & Taylor 2017

Other mechanisms/contexts to improve info extraction

CompSci / ML: classification algorithms with strategic responses
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Background on Framework
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Information Loss

In some models, fixed point policy yields full information,
so no need to distort

When corresponding signaling game has separating eqm

Muddled information framework (FK 2019)

Observer cares about agent’s natural action η
• Agent’s action absent manipulation

Agents also have heterogeneous gaming ability γ
• Manipulation skill, private gain from improving allocation,

willingness to cheat

No single crossing: 2-dim type; 1-dim action

When allocation rule rewards higher actions,
high actions will muddle together high η with high γ
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Muddled Information
Frankel & Kartik 2019

Market information in a signaling equilibrium
Analogous to fixed point in current paper

Agent is the strategic actor

• chooses x to maximize V (η̂(x), s)− C(x; η, γ)
• x is observable action, η̂ is posterior mean,

s is stakes / manipulation incentive

• leading example: sη̂(x)− (x−η)2
γ

Allocation implicit: agent’s payoff depends on market belief

Key result: higher stakes =⇒ less eqm info (about natural action)

Current paper explicitly models allocation problem;
How to use commitment to ↓ info loss and thereby ↑ alloc accuracy
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Model
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Designer’s problem

Agent(s) of type (η, γ) ∈ R2

Designer wants to match allocation y ∈ R to natural action η:

Utility ≡ −(y − η)2

Allocation rule Y (x), based on agent’s observable x ∈ R
Agent chooses x based on (η, γ) and Y (details later)

Expected loss for designer:

Loss ≡ E[(Y (x)− η)2]

Nb: pure allocation/estimation problem

Designer puts no weight on agent utility

Effort is purely “gaming”

Useful decomposition:

Loss = E[(E[η|x]− η)2]︸ ︷︷ ︸
Info loss from estimating η from x

+ E[(Y (x)− E[η|x])2]︸ ︷︷ ︸
Misallocation loss given estimation
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Linearity assumptions

We will focus on

Linear allocation policies for designer:

Y (x) = βx+ β0

• β is allocation sensitivity, strength of incentives

Agent has a linear response function:

Given policy (β, β0), agent of type (η, γ) chooses

x = η +mβγ

Parameter m > 0 captures manipulability of the data (or stakes)

Such response is optimal if agent’s utility is, e.g.,

y − (x− η)2

2mγ
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Summary of designer’s problem

Joint distribution over (η, γ)

• Means µη, µγ ; variances σ2
η, σ

2
γ > 0; correlation ρ ∈ (−1, 1)

• ρ ≥ 0 may be more salient, but ρ < 0 not unreasonable

• Main ideas come through with ρ = 0

Designer’s optimum (β∗, β∗0) minimizes expected quadratic loss:

min
β,β0

E
[(
β(

agent’s
response x︷ ︸︸ ︷
η +mβγ) + β0︸ ︷︷ ︸
allocation Y (x)

− η
)2]

• Simple model, but objective is quartic in β
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Preliminaries
Linearly predicting type η from observable x

Suppose Agent responds to allocation rule Y (x) = βx+ β0,
then Designer gathers data on joint distr of (η, x)

Let η̂β(x) be the best linear predictor of η given x:

η̂β(x) = β̂(β)x+ β̂0(β),

where, following OLS, β̂(β) =
Cov(x, η)

Var(x)
=

σ2
η +mρσησγβ

σ2
η +m2σ2

γβ
2 + 2mρσησγβ

Can rewrite designer’s objective

for linear policies

Loss = E[(E[η|x]− η)2]︸ ︷︷ ︸
Info loss from

estimating η from x

+ E[(Y (x)− E[η|x])2]︸ ︷︷ ︸
Misallocation loss given

estimation
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Preliminaries
Linearly predicting type η from observable x

Suppose Agent responds to allocation rule Y (x) = βx+ β0,
then Designer gathers data on joint distr of (η, x)

Let η̂β(x) be the best linear predictor of η given x:

η̂β(x) = β̂(β)x+ β̂0(β),

where, following OLS, β̂(β) =
Cov(x, η)

Var(x)
=

σ2
η +mρσησγβ

σ2
η +m2σ2

γβ
2 + 2mρσησγβ

Can rewrite designer’s objective for linear policies

Loss = E[(η̂β(x)− η)2]︸ ︷︷ ︸
Info loss from

linearly estimating η from x

+ E[(Y (x)− η̂β(x))2]︸ ︷︷ ︸
Misallocation loss given

linear estimation

• Info loss ∝ 1−R2
ηx

• For corr. ρ ≥ 0, β̂(β) is ↓ on β ≥ 0 (∵ x = η +mβγ)
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Benchmarks
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Benchmarks
Loss = Info loss from linear estimation + Misallocation loss given linear estimation

Constant policy: Y (x) = 0 · x + β0

No manipulation, x = η

Info loss is 0

Misallocation loss may be very large

Naive policy: Y (x) = 1 · x + 0

Designer’s b.r. to data generated by constant policy

Y (x) = η̂β=0(x) = β̂(0)x+ β̂0(0)

But after implementing this policy, agent’s behavior changes

Agent now responding to β = 1, not β = 0
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Benchmarks
Loss = Info loss from linear estimation + Misallocation loss given linear estimation

Designer’s b.r. if agent behaves as if policy is (β, β0)

Set Y (x) = η̂β(x) = β̂(β)x+ β̂0(β)

Designer’s optimum if agent’s behavior were fixed

Fixed point policy: Y (x) = βfpx+ βfp0

β̂0(β
fp) = βfp0 and β̂(βfp) = βfp

Simultaneous-move game’s NE (under linearity restriction)
• NE w/o restriction if (η, γ) is elliptically distr

Misallocation loss given linear estimation = 0,
allocations ex post optimal

Info loss may be large
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Designer best response β̂(·) and fixed points

If (η, γ)’s corr. is ρ ≥ 0, then:
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For β ≥ 0, best response sensitivity β̂(β) is positive and ↓
Unique positive fixed point, and it is below naive b.r.: βfp < 1
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Designer best response β̂(·) and fixed points
If (η, γ)’s corr. is ρ < 0, then:
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β
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ρ=-.5
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β � 0 =⇒ higher x indicates lower η =⇒ β̂(β) < 0

β̂(β) can increase on β ≥ 0

Possible for fixed point sensitivity above naive: βfp > 1

Multiple positive fixed points possible
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Main Result
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Main Result
Designer chooses policy Y (x) = βx+ β0

Nb: Always at least one positive fixed point; just one if ρ ≥ 0

Proposition

For the optimal policy’s sensitivity β∗:

1 (Flattening.) 0 < β∗ < βfp for any βfp > 0.

2 (Underutilize info.) β̂(β∗) > β∗.

Commitment can yield large gains: ∃ params s.t.

L(βfp) ' L(0) = σ2η, arbitrarily large

L(β∗) ' 0, first best
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Main Result
Designer chooses policy Y (x) = βx+ β0

Nb: Always at least one positive fixed point; just one if ρ ≥ 0

Proposition

For the optimal policy’s sensitivity β∗:

1 (Flattening.) 0 < β∗ < βfp for any βfp > 0.

2 (Underutilize info.) β̂(β∗) > β∗.

Point 2 follows from point 1, ∵ β̂(0) > 0. Proof logic for point 1:

Loss = Information loss + Misallocation loss.

1 First order benefit of ↑ β from 0: constant policy not optimal

2 Lemma 1: First order benefit of ↓ β from any βfp

• Info loss ∝ 1−R2
xη = 1− Corr(x, η)2

• sign[Corr(x, η)] = sign[β̂] = sign[βfp] (last eq ∵ β̂(βfp) = βfp)

• Corr(x, η) ↑ in β for β < 0, ↓ in β for β > 0

=⇒ Local max in (0, βfp)

3 Show that such local max is global max (involved: quartic polynomial)
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Main Result: illustration
Loss = Information loss + Misallocation loss

Misallocation

loss

Info loss

Total loss

0 βfpβ* βn=1
β

0.2

0.4

0.6

0.8

1.0

1.2
Losses

(In general, Loss not convex nor even quasiconvex on R.)
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Some comparative statics

Recall x = η +mβγ

Let k ≡ mσγ/ση describe susceptibility to manipulation

Proposition

1 As k →∞, β∗ → 0; As k → 0, β∗ → 1;
When ρ ≥ 0, β∗ ↓ in k.

2 When ρ = 0, β∗/βfp ↓ in k;

β∗/βfp → 1 as k → 0 and β∗/βfp → 3
√
1/2 ' .79 as k →∞.
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Figure with ρ = 0.
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Conclusion
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Discussion
Can nonlinear allocation rules do better? Typically, yes.

• But linear rules are simple, canonical, and practical

• Straightforward to interpret: can discuss sensitivity to and
(under/over)utilization of data, and compare to fixed points

• Comparable to linear fixed points, which exist for elliptical distrs
and to naive, which is linear

If designer wants to reduce manipulation costs, ↓ β∗

If manipulation is productive effort, ↑ β∗

Crucial asymmetry in agent behavior x = η +mβγ

• E.g., agent chooses effort (cost) e to generate data x = η +
√
γ
√
e

Is effort a substitute or complement to the trait designer’s values?

• If designer wants to match allocation to γ, logic flips

→ For ρ ≥ 0, β∗ > βfp for any βfp

• If designer wants to match (1− κ)η + κγ,

→ For ρ = 0 and (unique) βfp > 0, sign[β∗ − βfp] = sign[κ− κ∗]
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Discussion

Our model: info loss driven by heterogeneous response to incentives

Does flattening fixed point extend to other sources of info loss?

• Appendix: simple model of info loss driven by bounded action space

More research: counterparts to “flattening” / “underutilizing
information” in general allocation problems

Thank you!
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