Electoral Systems and Inequalities in Government Interventions

Garance Genicot (r) Laurent Bouton (r) Micael Castanheira

April 2021

- Government interventions fraught with geographic inequalities
 - quantity and quality of public goods and services
 (Alesina et al. 99, WDR 2004, Barnerjee et al. 08)
 - ► taxation (Albouy 09, Troaino 17)
- Distributive politics literature: political factors are key

(Ansolabehere et al. 02, Besley and Burgess 02, Stromberg 04, 08, Hodler and Raschky 08, Finan and Mazzocco 16)

- many factors (e.g., apportionment, contestability, turnout, information, presence of core supporters/co-ethnics)
- overall political distortions appear substantial
- This paper: focus on electoral systems (MAJ vs. PR)

In MAJ systems

- multitude of electoral districts
- each select a limited number of representative
- winner-take-all method

In PR systems

- ► fewer electoral districts
- ► each select at least 2 representatives
- seats assigned in proportion to the vote shares of each party

MAJ and PR are ubiquitous

▶ 82% of legislative elections held in the 2000s (Bormann and Golder 13)

Frequent debates about which system to use

- transition to democracies
- older democracies (reforms relatively frequent)
 - ★ Colomer (2004): "82 major electoral system changes for assemblies [...] in 41 countries." between the early nineteenth century and 2002 40 cases MAJ → PR, 13 cases PR → MAJ

Results relevant for Electoral College vs. NPV

- ► Whitaker and Neale (2004): "[...] more proposed constitutional amendments have been introduced in Congress regarding electoral college reform than on any other subject."
- current initiative: National Popular Vote Interstate Compact

- Conventional wisdom: MAJ systems more conducive to inequality
 - steeper incentives to target govt interventions to specific groups
- Based on various theoretical arguments

(Persson&Tabellini 99, 00; Lizzeri&Persico 01, 05; Grossman&Helpman 05, Stromberg 08)

- ► 50%-of-50% under MAJ, but 50% under PR
- battleground states
- tension between party leaders and "regional" legislators in MAJ
- This overlooks importance of geographic distribution of voters
 - ► MAJ: parties must win in different electoral districts in order to win multiple seats (50%-of-at-least-50%)
 - ► PR: no geographical constraint

This Paper

- Model of electoral competition where
 - ▶ government intervention **targetable** at finer level than electoral district
 - heterogeneous localities: population size, turnout, swingness
- Uncover a relative electoral sensitivity effect present only in MAJ
 - ▶ PR: more resources to localities with higher sensitivity
 - ► MAJ: more resources to localities with higher relative sensitivity
 - ▶ empirical evidence based on U.S. data (Stashko 20, Naddeo 20)
- Can lead to lower inequalities in govt interventions in MAJ
- Numerical simulations to assess Electoral College reforms

The Economy

- Continuum of voters of size 1
 - ▶ L localities: indexed by I, size n_I
 - ▶ each locality belongs to an electoral district $d \in \{1, 2, ..., D\}$
- ullet Voters consume **locality-specific public resources**: $oldsymbol{\mathsf{q}} = \{q_1,...,q_L\}$
 - ▶ q_I is amount per capita in locality I
- Preferences $u_I(\mathbf{q}) = u(q_I)$
 - u' > 0 > u''
 - no spillover across localities; no differences in utility functions

→ロト→同ト→三ト → ● ◆900

The Economy

- Government allocates budget y to the different localities
 - targeting at a finer level than the electoral district
 - \star except in special case L=D
 - ► cost: $k_I(q_I) \equiv n_I^{\alpha} q_I$, with $\alpha \in [0, 1]$
 - \star $\alpha=1$: pure transfers ; $\alpha=0$: pure local public good
 - budget constraint: $\sum_{l} n_{l}^{\alpha} q_{l} = y$

Optimal Allocation

- Politics-free benchmark?
- Social planner maximizes utilitarian welfare function:

$$\max_{\mathbf{q}} \mathcal{W}\left(\mathbf{q}
ight) = \sum_{l} n_{l} u_{l}\left(\mathbf{q}
ight)$$
 s.t. $\sum_{l} n_{l}^{lpha} q_{l} = y$

Socially optimal allocation:

$$rac{\partial u_{l}\left(\mathbf{q}
ight)}{\partial q_{l}}=\lambda^{SW}n_{l}^{lpha-1}$$
 , $orall I$

- ightharpoonup socially optimal q_l increases in $n_l o$ only **vertical inequality**
- no effect of electoral districts, nor of political characteristics

- 4 ロ ト 4 周 ト 4 三 ト 4 三 ト 9 0 0 0

A Measure of Inequality

- To assess inequality in govt allocation: welfare-based measure
- We build upon Atkinson (1970, 1983)
 - ► assume CRRA utility:

$$u_I(\mathbf{q}) = \begin{cases} \ln\left(q_I\right) & \text{if } \rho = 1\\ \frac{\left(q_I\right)^{1-\rho}}{1-\rho} & \text{if } \rho \neq 1 \end{cases}$$

- \star ρ is individual risk aversion
- define the equivalent budget: $y^{E}\left(\mathbf{q}\right)=\tilde{W}^{-1}\left(\mathcal{W}\left(\mathbf{q}\right)\right)$
 - \star were $\tilde{W}\left(y\right)$ is the indirect social utility function

A Measure of Inequality

Our a la Atkinson inequality measure is:

$$A\left(\mathbf{q}\right) := 1 - \frac{y^{E}\left(\mathbf{q}\right)}{y}$$

- ▶ compares actual budget to minimum budget needed to achieve the same amount of welfare
- A is a measure of financial cost of political distortions
 - ▶ the smaller A, the more efficient the allocation

The Politics

A Model of Electoral Competition

- Two parties: A and B
 - ightharpoonup make budget allocation proposals: \mathbf{q}^A and \mathbf{q}^B
- Objective: maximize expected number of seats in national assembly
 - ► robust to maximizing proba of winning majority of seats
- Electoral system: maps votes into seats
 - ► PR: seats attributed proportionally to fraction of national votes
 - * as if one nationwide district
 - ★ extension: PR with districts
 - ► *MAJ*: seats are proportional to the fraction of districts won
 - ★ one seat per district
 - ★ districts won by FPTP

The Politics

A Model of Electoral Competition

Probabilistic voting model

(Enelow&Hinich 82, Lindbeck&Weibull 87; Dixit&Londregan 95; Persson&Tabellini 01, Stromberg 04,08)

- Turnout varies across localities: t_l
- When voting, individual i in locality I casts ballot for A iff:

$$\Delta u_I(\mathbf{q}) \geq v_{i,I} + \delta_d$$

- $ightharpoonup
 u_{i,l}$: individual's ideology, cdf $\Phi_l(\cdot)$
 - $\star \Phi_{I}\left(-\infty\right)=0, \Phi_{I}\left(\infty\right)=1, \text{ and } \frac{\partial\Phi_{I}\left(\nu\right)}{\partial\nu}=\phi_{I}\left(\nu\right)>0 \ \forall \nu\in\mathbb{R}$
- lacktriangledown δ_d : district-level popularity shock, cdf $\Gamma_d\left(\cdot\right)$
 - $\star \ \Gamma_{d}\left(-\infty\right)=0\text{, }\Gamma_{d}\left(\infty\right)=1\text{, and }\frac{\partial\Gamma_{d}\left(\delta\right)}{\partial\delta}=\gamma_{d}\left(\delta\right)>0\ \forall\delta\in\mathbb{R}$

←ロト ←団ト ← 恵ト ← 恵 → りへで

Equilibrium under PR

- Under PR: parties maximize the country-wide expected vote share subject to the aggregate budget constraint
- If equilibrium exists: $\mathbf{q}^A = \mathbf{q}^B$, and implicitly defined by:

$$\frac{\partial u_{I}\left(\mathbf{q}^{A}\right)}{\partial q_{I}^{A}}s_{I}=n_{I}^{\alpha}\lambda^{PR}\ \forall I$$

- $s_l = \bar{\phi}_l t_l n_l$ is the **electoral sensitivity** of locality l
 - \star $ar{\phi}_I = \int_{\kappa_+} \phi_I \left(-\delta_d \right) d\Gamma_d \left(\delta_d \right) o$ expected density of swing voters in I
- ullet λ^{PR} is the Lagrange multiplier of the budget constraint under PR

Equilibrium under PR

Proposition

In the PR system, $q_l > q_{l'}$ if and only if $s_l n_l^{-\alpha} > s_{l'} n_{l'}^{-\alpha}$.

- More sensitive localities receive a larger share of the budget
 - \blacktriangleright for $\alpha<1$ (no pure transfers): localities with a large number of active voters and more swing voters
 - for $\alpha=1$ (pure transfers): population size does not play a role, but turnout rate and swingness still play a role
- ullet No effect of γ_d

- Under MAJ: parties maximize the number of districts won
 - winning a district requires $\pi_d(\cdot) \geq 1/2$
- If equilibrium exists: $\mathbf{q}^A = \mathbf{q}^B$, and implicitly defined by:

$$\hat{\gamma}_{d(I)} rac{\hat{\mathbf{s}}_I}{\hat{\mathbf{s}}_{d(I)}} u_I' \left(\mathbf{q}^A\right) = n_I^{\alpha} \lambda^{MAJ} \ orall I$$

- $\hat{\gamma}_d$ is the **contestability** of district d
 - \star intuitively: proba that parties end up close to a tie in d
 - \star $\hat{\delta}_d$ is the value of δ s.t. district is tied when $\mathbf{q}^A = \mathbf{q}^B$
- $\hat{\phi}_I = \phi_I \left(-\hat{\delta}_d \right)$ is the **swingness** of locality I
- $\hat{s}_I = t_I n_I \hat{\phi}_I$ is the electoral sensitivity of locality I
- $\hat{s}_d = \sum_{i \in d} t_i n_i \hat{\phi}_i$ is the aggregate sensitivity in district d

4 D > 4 A > 4 B > 4 B > B 9 9 9 9

In MAJ,
$$q_l > q_{l'}$$
 if and only if $\hat{\gamma}_{d(l)} \frac{\hat{s}_l n_l^{-\alpha}}{\hat{s}_{d(l)}} > \hat{\gamma}_{d(l')} \frac{\hat{s}_{l'} n_{l'}^{-\alpha}}{\hat{s}_{d(l')}}$.

- For given pop. size, share of budget of locality / increases with
 - lacktriangledown contestability of district, $\hat{\gamma}_{d(I)}$
 - ightharpoonup relative electoral sensitivity, $\frac{\hat{\mathbf{s}}_l}{\hat{\mathbf{s}}_{d(l)}}$
 - \star resources allocated to a locality depend on characteristics of neighbors

Proposition

In MAJ, $q_l > q_{l'}$ if and only if $\hat{\gamma}_{d(l)} \frac{\hat{s}_{l} n_{l}^{-\alpha}}{\hat{s}_{d(l)}} > \hat{\gamma}_{d(l')} \frac{\hat{s}_{l'} n_{l'}^{-\alpha}}{\hat{s}_{d(l')}}$.

Intuition:

- ► increase in support of A in I affects winner of district iff pivotal
- for given increase in support, there is a range of realizations of δ_d s.t. the change is pivotal
- \blacktriangleright the more likely δ_d fall in pivotal range, the better the locality is treated
- lacktriangle two factors determine the likelihood δ_d falls in pivotal range
 - ★ width and height

In MAJ,
$$q_l > q_{l'}$$
 if and only if $\hat{\gamma}_{d(l)} \frac{\hat{\mathbf{s}}_l n_l^{-\alpha}}{\hat{\mathbf{s}}_{d(l)}} > \hat{\gamma}_{d(l')} \frac{\hat{\mathbf{s}}_{l'} n_{l'}^{-\alpha}}{\hat{\mathbf{s}}_{d(l')}}$.

- Width of pivotal range determined by relative sensitivity
 - ▶ higher \hat{s}_I → voters in I more responsive to increase in utility
 - ightarrow change in the winning party for a wider range of shocks
 - \rightarrow increases width of pivotal range
 - lacktriangledown higher $\hat{s}_{d(I)}
 ightarrow ext{voters}$ in d more responsive to the shock δ_d
 - ightarrow aggregate vote share in d more unstable
 - \rightarrow reduces width of pivotal range

In MAJ,
$$q_l > q_{l'}$$
 if and only if $\hat{\gamma}_{d(l)} \frac{\hat{\mathbf{s}}_l n_l^{-\alpha}}{\hat{\mathbf{s}}_{d(l)}} > \hat{\gamma}_{d(l')} \frac{\hat{\mathbf{s}}_{l'} n_{l'}^{-\alpha}}{\hat{\mathbf{s}}_{d(l')}}$.

- Width of pivotal range determined by relative sensitivity
- Height of pivotal range determined by district contestability
 - ► likelihood that the shock takes any of the values in the pivotal range

In MAJ,
$$q_l > q_{l'}$$
 if and only if $\hat{\gamma}_{d(l)} \frac{\hat{\mathbf{s}}_l n_l^{-\alpha}}{\hat{\mathbf{s}}_{d(l)}} > \hat{\gamma}_{d(l')} \frac{\hat{\mathbf{s}}_{l'} n_{l'}^{-\alpha}}{\hat{\mathbf{s}}_{d(l')}}$.

- Special case: one locality per district
 - ▶ typical in the literature (Persson and Tabellini 00, Stromberg 04, 08)
- $oldsymbol{\hat{s}}_l = \hat{s}_{d(l)}
 ightarrow$ all localities have the same relative sensitivity
- Differences in allocations exclusively driven by differences in contestability across district
 - trade-off MAJ vs. PR: contestability vs. sensitivity
 - overlooks role of relative sensitivity

- Comparison of government interventions under MAJ and PR systems
 - ► PR: electoral sensitivity
 - ► MAJ: relative electoral sensitivity and contestability
- Simplifying assumptions
 - $\alpha = 0$ (pure public good)
 - individual and district shocks are uniformly distributed
 - \star individual specific shock: $v_{i,l} \sim U[\frac{-1}{2\phi_l}, \frac{1}{2\phi_l}]$

$$(ar{\phi}_I=\hat{\phi}_I=\phi_I=$$
 swingness)

 \star district specific shock: $\delta_d \sim U[\beta_d - \frac{1}{2\gamma_d}, \beta_d + \frac{1}{2\gamma_d}]$

$$(\hat{\gamma}_d = \gamma_d = \text{contestability})$$

Winners and Losers

- Locality wins or loses following a PR-to-MAJ reform?
- Numerical example with 4 localities and 2 districts

• CRRA:
$$u(q_I) = 2\sqrt{q_I}$$

$$ightharpoonup \gamma_A/\gamma_B=1 ext{ or } \gamma_A/\gamma_B=6$$

District	Locality	Sensitivity (s_l)	q_l^{PR}	$q_l^{MAJ} \atop (\gamma_A/\gamma_B = 1)$	$ q_l^{MAJ} (\gamma_A / \gamma_B = 6) $
A	1	1	2.9%	9.7%	19.4%
A	2	2	11.8%	38.7%	77.7%
В	3	2	11.8%	7.1%	0.4%
В	4	5	73.5%	44.5%	2.5%

Inequality

- Which system generates more inequalities in govt interventions?
- We use our Atkinson measure of inequality $A(\mathbf{q})$
 - ► increases as political forces distort allocation away from social optimum
 - ▶ PR Atkinson-dominates MAJ if $A\left(\mathbf{q}^{PR}\right) < A\left(\mathbf{q}^{MAJ}\right)$
- Back to previous numerical example:
 - ▶ if the 4 localities have identical turnout and swingness
 - ightarrow sensitivity only varies because of differences in pop. sizes
 - ***** PR: social optimum $A\left(\mathbf{q}^{PR}\right)=0$
 - \star MAJ: distortions $A\left(\mathbf{q}^{MAJ}\right)=0.14$ for $\gamma_A/\gamma_B=1$ $A\left(\mathbf{q}^{MAJ}\right)=0.71$ for $\gamma_A/\gamma_B=6$

4014914717 7 000

Inequality

- Which system generates more inequalities in govt interventions?
- We use Atkinson measure of inequality $A(\mathbf{q})$
 - ► increases as political forces distort allocation away from social optimum
 - ▶ PR Atkinson-dominates MAJ if $A\left(\mathbf{q}^{PR}\right) < A\left(\mathbf{q}^{MAJ}\right)$
- Back to previous numerical example:
 - if the 4 localities have identical turnout and swingness
 - if the 4 localities have identical pop. size $(n_l = 1/4)$
 - \star MAJ Atkinson-dominates PR when $\gamma_A/\gamma_B=1$

$$A(\mathbf{q}^{MAJ}) = 0.13 < A(\mathbf{q}^{PR}) = 0.26$$

 \star PR Atkinson-dominates MAJ when $\gamma_A/\gamma_B=6$

$$A(\mathbf{q}^{MAJ}) = 0.41 > A(\mathbf{q}^{PR}) = 0.26$$

Inequality

- Which system generates more inequalities in govt interventions?
- General comparison? Complex

Proposition

PR Atkinson-dominates MAJ if $\frac{\gamma_d}{\sum_{d'=1}^{D} \gamma_{d'}}$ is a mean preserving-spread of

 $\frac{s_d}{\sum_{d'=1}^{D} s_{d'}}$ (and conversely) when either

- 1. $ho \neq 1$, there is one locality per district, and $n_d = 1/D \; orall d$, or
- 2. $\rho = 1$, and $n_d = 1/D \ \forall d$.
 - For those specific cases, comparison boils down to comparing
 - spread in contestabilities
 - spread in electoral sensitivities

Inequality

- Which system generates more inequalities in govt interventions?
- General comparison: complex

Proposition

PR Atkinson-dominates MAJ if $\frac{\gamma_d}{\sum_{d'=1}^D \gamma_{d'}}$ is a mean preserving-spread of

 $\frac{s_d}{\sum_{l=1}^{D} s_{dl}}$ (and conversely) when either

- $\vec{1}.\stackrel{\circ}{
 ho}\stackrel{\circ}{
 eq} 1$, there is one locality per district, and $n_d=1/D\ orall d$, or
- 2. $\rho = 1$, and $n_d = 1/D \ \forall d$.
 - Useful to interpret findings in the empirical literature
 - ► Stromberg (2008): replacing Electoral College with NPV
 - \rightarrow decrease in cross-states inequalities in campaign resources

(for elections studied: cross-state differences in contestability >> differences in sensitivity)

• What if we allow for targeting at sub-district level?

Importance of Sub-District Targeting

Affects comparison in terms of inequalities

- Numerical example: same as before (with $\gamma_A/\gamma_B=6$)
 - new columns with targeting at district level

District	Locality	s_l	n_l	q_l^{PR}	q_l^{MAJ}	q_l^{PR-d}	q_l^{MAJ-d}
A	1	1	17%	2.9%	19.4%	7.8%	48.6%
A	2	2	33%	11.8%	77.7%	7.8%	48.6%
В	3	2	33%	11.8%	1.2%	42.2%	1.4%
В	4	5	17%	73.5%	2.5%	42.2%	1.4%
Atkinson index:			0.42	0.38	0.22	0.40	

- Comparison of Atkinson measures flips → misleading conclusion
 - ► targeting creates within district inequality under both systems
 - what matters is the share of resources that flow to each district (weight put on new distortions)

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

Importance of Sub-District Targeting

Affects gains and loses of districts

- Different numerical example:
 - ► same utility function
 - ▶ 3 districts (A, B, and C)
 - ★ each composed of two localities
 - \star different contestabilities: $\gamma_A=$ 0.2, $\gamma_B=$ 1, and $\gamma_C=$ 1.5

District	s_l		q_d^{PR} q_d^{MAJ}		q_d^{PR-d}	q_d^{MAJ-d}
A	1	1	15.1 %	1%	16.7 %	1.2%
В	0.2	1.8	24.7%	41.7%	16.6 %	30.4%
C	2	2	60.2%	57.3%	66.7 %	68.4%

- A and C receive more resources with district targeting, B less
- MAJ-to-PR reform:
 - ► C wins under locality targeting (+3 p.p.)
 - ► C loses under district targeting (-1.7 p.p.)

- Study possible reforms of the Electoral College
- Extension of the model to other versions of MAJ and PR
- Calibration of theoretical results to U.S. data

Electoral College:

- ► each state has a #Electors = #representatives + #senators
- candidate with most electors wins
- MAJ but with different weight for the districts

Potential reforms:

- ► National Popular Vote (NPV)
 - ★ equivalent to PR
- ► PR version of the Electoral College (PR-EC)
 - \star allocation of electors proportional to vote shares in each state

- Electoral College in our model
 - \simeq MAJ system with district weight $\omega_{\it d}$

$$\frac{\partial u_{l}\left(\mathbf{q}^{A}\right)}{\partial q_{l}^{A}} = \frac{1}{\omega_{d(l)}} \frac{\lambda^{\mathbf{College}}}{\gamma_{d(l)}} \; \frac{\sum_{k \in d(l)} s_{k}}{s_{l}}, \; \forall l$$

- Comparison with MAJ:
 - ullet tilts the allocation of resources towards districts with higher ω_d
 - same role of contestability and relative sensitivity

Theory

PR version of the Electoral College in our model

$$\frac{\partial u_{l}\left(\mathbf{q}^{A}\right)}{\partial q_{l}^{A}}=\frac{n_{d}t_{d}}{\omega_{d}}\frac{1}{s_{l}}\lambda^{PR-EC},\ \forall l$$

- ▶ $t_d := \sum_{l \in d} t_l \frac{n_l}{n_d}$ is the average turnout in d
- $ightharpoonup n_d := \sum_{l \in d} n_l$
- Comparison with nationwide PR or NPV:
 - ▶ new term: $\frac{n_d t_d}{\omega_d}$ was de facto equal to 1 under PR
 - ★ allocation as if each district received a share of seats equal to its realized number of votes
 - ★ high-turnout districts tend to receive less under PR-EC than PR
 - ► still no effect of contestability

Numerical Simulations

- Application of results to U.S. presidential election data
- Goal: assess numerically the implications of possible reforms of the U.S. Electoral College
- Focus on the insights that sub-district targeting brings to the question

Numerical Simulations: Data

- Match model and US political and administrative structure
 - states are the districts (48 in our dataset)
 - counties are the localities (3106 in our dataset)
- Our dataset covers 10 presidential elections (1980-2016)
- We need proxies for key variables

Numerical Simulations: Data

Proxies for key variables

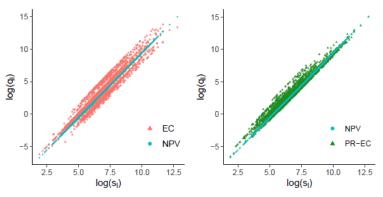
- n_I: decennial census information from IPUMS-NHGIS
 - ▶ post-2010, supplemented with American Community Survey
- t_l : number of votes cast (from Congressional Quarterly Press Voting and Elections Collection) divided by total county population
- \bullet ϕ_I : standard deviation in the democratic vote share in previous elections (i.e., between 1980 and the election under consideration)
- \circ γ_d : two measures
 - $ightharpoonup \gamma_{d,e} = 1 VM_{d,e}$ where $VM_{d,e} = |rep_share_{d,e} dem_share_{d,e}|$ ★ Berry et al. (2010)
 - γ_{de}^{Str} relies on the work and data from Stromberg (2008)
 - ★ roughly, we fit Stromberg's predictions, find relationship between fitted values and γ_{de} , and then extrapolate for other years

April 2021

Numerical Simulations: Data

Table 4: Descriptive Statistics

Statistics	Mean	Median	Std. Dev	Min	Max	N	R^2 on FE
ϕ_l	0.073	0.067	0.027	0.019	0.222	9314	0.334
t_l	0.43	0.431	0.076	0.119	0.896	9314	0.377
n_l (*)	100	26	321	0	10121	9314	0.119
s_l (*)	3	1	10	0	357	9314	0.116
s_l/s_d	0.015	0.005	0.04	0	0.713	9314	0.206
s_d (*)	190	123	206	17	1209	144	1.000
γ_d	0.83	0.841	0.111	0.486	0.999	144	1.000
γ_d^{Str}	0.83	0.719	0.412	0.248	2.54	144	1.000
ω_d	11	8.5	9.706	3	55	144	1.000

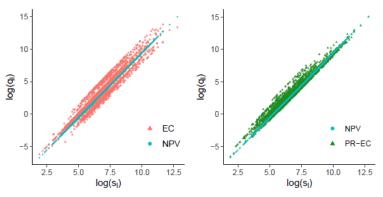

Notes: Averages for years 2008-2016. (*) in thousands.

- Variations both across counties and across states
 - particularly important for the absolute and relative sensitivity
- ullet R^2 of regressions of each variable on state-year fixed effects
 - ► substantial within-state variation in the variables of interest

Numerical Simulations: Predicted Allocations

- We can compute the predicted allocation for
 - CRRA utility ($\rho = 0.5$)
 - ► uniform shocks
 - ► total budget of \$10 million
- Three systems: EC, NPV, and PR-EC

Numerical Simulations: Predicted Allocations

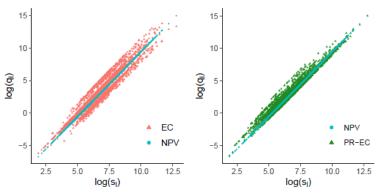


Notes: Year 2016. Strömberg-like measure of contestability.

Figure 1: County allocations as a function of their electoral sensitivity

 \bullet Relationship is log-linear in s_l (drives most of variations in allocations)

Numerical Simulations: Predicted Allocations



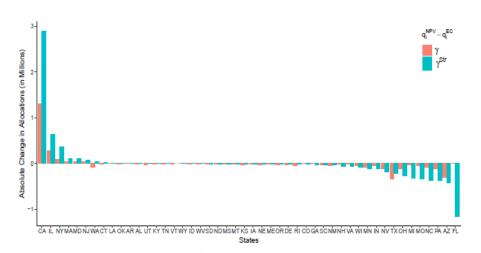
Notes: Year 2016. Strömberg-like measure of contestability.

Figure 1: County allocations as a function of their electoral sensitivity

ullet Variations not only due to differences in n_l , also t_l and ϕ_l

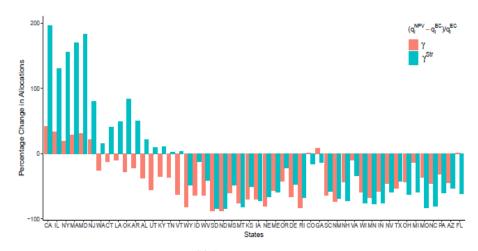
Numerical Simulations: Predicted Allocations

Notes: Year 2016. Strömberg-like measure of contestability.


Figure 1: County allocations as a function of their electoral sensitivity

 \bullet EC and PR-EC: counties with same s_l typically be treated differently

Numerical Simulations: Winners and Losers of the Reform

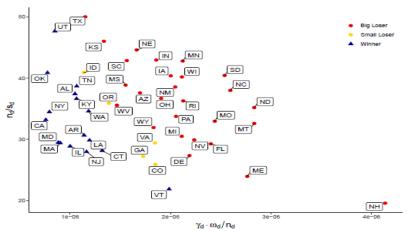

- A reform of the EC towards NPV would generate winners and losers
- Counties in a given state win more (or lose less) when the state has
 - ightharpoonup a high aggregate sensitivity s_d
 - lacktriangle a small number of electoral votes ω_d
 - lacktriangle a low contestability γ_d or γ_d^{Str}

Numerical Simulations: Winners and Losers of the Reform

(a) Absolute gain.

Numerical Simulations: Winners and Losers of the Reform

(b) Percentage gain.


Numerical Simulations: Winners and Losers of the Reform

- (1) A majority of states lose from the reform in favor of a few
- ② Common wisdom: winners and losers depends on γ and ω
 - ▶ many of biggest losers (FL, PA, AZ, NC, MI) battleground states
 - many of biggest winners have low ω and γ (CA, IL, NY, MA)
 - ullet importance of contestability is magnified under γ^{Str}
 - \star FL: magnitude of loss is fundamentally different under γ and γ^{Str}
 - \star some states (AR, LA, OK, KY, AL, TN, CT, UT, WA) win only for γ^{Str}

Numerical Simulations: Winners and Losers of the Reform

- 1 A majority of states lose from the reform in favor of a few
- ② Common wisdom: winners and losers depends on γ and ω
- Overlooks the role of the aggregate sensitivity of the state
 - new figure to highlight the importance of that component
 - ► IL vs. TX: similar contestability and malapportionment
 - ▶ yet, IL among biggest winners, TX among biggest losers
 - \star TX has relatively low s_d , due to low t_d and ϕ_d

Numerical Simulations: Winners and Losers of the Reform

Notes: Big Loser / Small Loser / Winner if percentage gain $\in (-\infty, -0.5]$ / (-0.5, 0]/ [0,∞). Average for 2008-2016. Strömberg-like contestability.

Figure 3: Decomposition of State's Characteristics

April 2021

Numerical Simulations: Winners and Losers of the Reform

- (1) A majority of states lose from the reform in favor of a few
- ② Common wisdom: winners and losers depends on γ and ω
- Overlooks the role of the aggregate sensitivity of the state
- Winners and losers in absolute value vs. percentage terms
 - ▶ largest winners in absolute value, also among those in percentage terms
 - ► largest losers in percentage also small states (MT, ND, RI, SD)
 - ★ over-represented in the EC

Numerical Simulations: Winners and Losers of the Reform

- A majority of states lose from the reform in favor of a few
- ② Common wisdom: winners and losers depends on γ and ω
- Overlooks the role of the aggregate sensitivity of the state
- Winners and losers in absolute value vs. percentage terms
- Similar results for reform to PR-EC
 - ▶ but, states with low turnout gain more (or lose less) than with NPV
 - e.g., CA and TX lower than average t_d , FL higher

Numerical Simulations: Inequality

- Comparison electoral systems based on inequality in allocation
- Two measures:
 - ► Gini of inequality across individuals: includes all inequalities
 - ► Atkinson measure: socially inefficient inequality

Results:

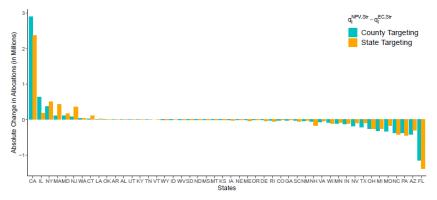

	$EC (\gamma^{Str})$	$EC(\gamma)$	NPV	PR-EC	
Gini	0.842	0.875	0.909	0.912	
Atkinson	0.316	0.089	0.072	0.071	

Table 5: Inequality measures 2016

- ► Gini: both reforms slightly increase inequality for 2008-2016
- ► Atkinson: both reforms slightly **decrease** inequality for 2008-2016

Numerical Simulations: State-Level vs. County-Level Allocations

What if no county targeting?

Notes: Average for 2008-2016.

Figure 6: Winners and losers of a reform for County and State Targeting

Numerical Simulations: State-Level vs. County-Level Allocations

What if no county targeting?

- IL and CA gain less, while NJ and MA gain more
- AZ and TX lose less, while FL and NH lose more
- Key factor: within-state heterogeneity
 - \blacktriangleright IL and CA composed of counties with considerably different s_l
 - highly sensitive counties gain more under county-level targeting, especially when other counties in the state are low sensitivity

Conclusions

- Effects of electoral systems on inequality in govt interventions
 - ► focus on PR vs. MAJ
- Main novelty: sub-district targeting and heterogeneity
- Main result: relative electoral sensitivity effect only in MAJ
 - can reverse common wisdom that inequalities higher in MAJ
- Implications for reforms of U.S. Electoral College
 - not only contestability and apportionment of the states
 - also, aggregate sensitivity of the states
 - relevance confirmed by numerical simulations