Beauty Contests and the Term Structure

Martin Ellison¹ Andreas Tischbirek²

¹University of Oxford, NuCamp & CEPR ²HEC Lausanne, University of Lausanne

December 2020

Motivation

Can information frictions help to explain the sizeable term premia contained in Treasury yields?

Figure: Zero-coupon US Treasury yield curve (4/1/1999 - 30/6/2017)

Literature

Bond premium puzzle

- Recursive preferences—Epstein and Zin (1989), Rudebusch and Swanson (2012), van Binsbergen et al. (2012)
- Model uncertainty—Barillas et al. (2009)
- Long-run risk—Bansal and Yaron (2004), Croce (2014)
- Rare disasters—Rietz (1988), Barro (2006)
- Habit Formation—Constantinides (1990), Campbell and Cochrane (1999), Rudebusch and Swanson (2008)
- Valuation Risk—Albuquerque et al. (2016)

Information in strategic settings and volatility

- Use of public information—Morris and Shin (2002), Angeletos and Pavan (2007)
- Volatility from information frictions—Angeletos and La'O (2013), Bergemann et al. (2015), Angeletos et al. (2018)

Overview

- 1 Decomposing the term premium
- 2 Models with a representative agent
- **3** Models with heterogeneously informed agents
- 4 A beauty contest model

Household side of generic DSGE model

Representative household maximises

$$\mathbf{E}_t \sum_{s=t}^{\infty} \beta^{s-t} u(c_s, l_s)$$

subject to

$$c_t + \sum_{n=1}^{N} p_t^{(n)} b_t^{(n)} = w_t l_t + d_t + \sum_{n=1}^{N} p_t^{(n-1)} b_{t-1}^{(n)}$$

- b_t⁽ⁿ⁾—non-contingent default-free zero-coupon bonds with maturity n = 1, 2, ..., N
- $p_t^{(n)}$ —bond price (note $p_t^{(0)} = 1$)

Interior solution

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)}, \quad n \in \{1, 2, \dots, N\}$$

with stochastic discount factor (SDF) $m_{t+1} \equiv \beta \frac{u_c(c_{t+1}, l_{t+1})}{u_c(c_t, l_t)}$ • Implied yield

$$i_t^{(n)} = -\frac{1}{n} \ln p_t^{(n)}$$

where we denote $i_t^{(1)} \equiv i_t$ for simplicity

Hypothetical "risk-neutral price"

$$\tilde{p}_t^{(n)} = \mathrm{e}^{-i_t} \mathrm{E}_t \tilde{p}_{t+1}^{(n-1)}, \qquad n \in \{1, 2, \dots, N\}$$

• Term premium (in per-period terms)

$$\psi_t^{(n)} = \frac{1}{n} \left(\tilde{p}_t^{(n)} - p_t^{(n)} \right)$$

Example – Two-period bond

• Term premium for n = 2

$$\psi_t^{(2)} = \frac{1}{2} \left(\tilde{p}_t^{(2)} - p_t^{(2)} \right) = -\frac{1}{2} \text{Cov}_t \left(m_{t+1}, p_{t+1}^{(1)} \right)$$

• Take unconditional expectation and apply total covariance law to obtain following result

Proposition

Assume the law of iterated expectations holds and the stochastic discount factor m_{t+1} is in the household information set \mathcal{I}_{t+1} at time t + 1. The unconditional mean real term premium is given by

$$E\psi_t^{(2)} = \frac{1}{2} \left[-\text{Cov} \left(m_{t+1}, m_{t+2} \right) + \text{Cov} \left(E_t m_{t+1}, E_{t+1} m_{t+2} \right) \right]$$

Implications

- Mean term premium (for n = 2) can be decomposed into
 - covariance of successive *realisations* of the SDF
 - covariance of successive *expectations* of the SDF
- Result generalises to higher maturities (n > 2)
- Nominal term premium can be decomposed in analogous way
- So far theory focuses on first term (e.g. recursive preferences)
 ⇒ Negative autocovariance of realisations of SDF required to explain positive mean term premium
- Process of expectation formation directly affects second term
 ⇒ Positive autocovariance of expectations of SDF required to
 explain positive mean term premium

Next step

• Use decomposition to connect informational assumptions and term premia in analytical models

Models with a representative agent

Households, firms and technology

• Production function of representative firm

$$y_t = A_t \overline{l}^{1-\alpha}$$

• Technology $a_t \equiv \ln A_t$ follows

$$\begin{aligned} \mathbf{a}_t &= \mathbf{x}_t + \eta_t, \qquad \eta_t \sim \mathcal{N}(\mathbf{0}, \sigma_\eta^2) \\ \mathbf{x}_t &= \rho \mathbf{x}_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim \mathcal{N}(\mathbf{0}, \sigma_\varepsilon^2) \end{aligned}$$

- Representative household has logarithmic utility \Rightarrow Coefficient of relative risk aversion tied to 1
- SDF can be expressed as

$$m_{t+1} = \beta \left(\frac{c_{t+1}}{c_t}\right)^{-1} = \beta \left(\frac{A_{t+1}\overline{l}^{1-\alpha}}{A_t\overline{l}^{1-\alpha}}\right)^{-1}$$
$$\approx \beta \left(1 + a_t - a_{t+1}\right)$$

Models with a representative agent

Information sets

Model	$\subset \mathcal{I}_t$	$\not\subset \mathcal{I}_t$
Full information Partial information Noisy information	$egin{array}{l} m^t, a^t, x^t, \eta^t\ m^t, a^t\ m^t, s^t\end{array}$	x^t, η^t a^t, x^t, η^t

Table: Information set of representative household

Notes: Signal given by $s_t = a_t + \xi_t$ with noise $\xi_t \sim N(0, \sigma_{\xi}^2)$.

Models with a representative agent

Figure: Components of mean real term premium (n = 2)

Notes: Solid line is mean real term premium, dashed line is component in autocovariance of realisations of SDF, dotted line is component in autocovariance of expected SDF. $\beta = 0.99$, $Var(a_t) = 0.01^2$, $Var(x_t)/Var(a_t) = 0.9$, $\sigma_{\xi}^2 = Var(a_t)/2$.

Models with heterogeneously informed agents

Identifying conditions required to generate term premia

- Heterogeneous information on the household-side now introduced to framework described before
- Continuum of ex ante identical agents indexed $i \in [0, 1]$
- Each agent observes signal $s_{i,t} = a_t + n_t + n_{i,t}$ and η_t allowing them to deduce

$$x_{i,t}^n = x_t + n_t + n_{i,t}$$

but not x_t (persistent component of technology)

Noise persistent so that

$$x_{i,t}^n = \rho x_{i,t-1}^n + \varepsilon_{i,t}^n$$

where $\varepsilon_{i,t}^n \equiv \varepsilon_t + \xi_t + \zeta_{i,t} \sim N(0, \sigma_{\varepsilon}^2 + \sigma_{\zeta}^2 + \sigma_{\zeta}^2)$

Forming expectation about m_{t+1} requires inferring x_t from xⁿ_{i,t}

Models with heterogeneously informed agents

• Focus on symmetric linear equilibrium, in which expectations are formed according to

$$\hat{\mathbf{E}}_{i,t} \mathbf{x}_t = \theta \mathbf{x}_{i,t}^n \quad \forall i$$

• Term premium then given by

$$\psi_t^{(2)} = \frac{1}{2}\beta^2 \left[\theta(1-\rho)\sigma_{\varepsilon}^2 - \sigma_{\eta}^2\right]$$

 $\Rightarrow \theta \uparrow \text{ implies } \psi_t^{(2)} \uparrow$

- Rational expectations are special case with $\theta = \theta^* = \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\varepsilon}^2 + \sigma_{\zeta}^2}$
- Suppose Ê_{i,t}x_t formed according to general loss function Which conditions are required to obtain expectations consistent with the mean term premium in US data?

Models with heterogeneously informed agents

General loss function

$$\mathbf{E}_{i,t} \begin{bmatrix} \left(\hat{\mathbf{E}}_{i,t} \boldsymbol{x}_t \quad \boldsymbol{x}_t \quad \int_0^1 \hat{\mathbf{E}}_{j,t} \boldsymbol{x}_t dj \right) \begin{pmatrix} 1 & \Omega_{12} & \Omega_{13} \\ 0 & \Omega_{22} & \Omega_{23} \\ 0 & 0 & \Omega_{33} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{E}}_{i,t} \boldsymbol{x}_t \\ \boldsymbol{x}_t \\ \int_0^1 \hat{\mathbf{E}}_{j,t} \boldsymbol{x}_t dj \end{pmatrix} \end{bmatrix}$$

• Optimal expectation satisfies

$$\hat{\mathbf{E}}_{i,t} \mathbf{x}_t = \theta \mathbf{x}_{i,t}^n = -\frac{1}{2} \left(\Omega_{12} \theta^* + \Omega_{13} \theta \frac{\sigma_{\varepsilon}^2 + \sigma_{\xi}^2}{\sigma_{\varepsilon}^2 + \sigma_{\xi}^2 + \sigma_{\zeta}^2} \right) \mathbf{x}_{i,t}^n$$

 Two degrees of freedom—If Ω₁₂ is normalised to the value consistent with MSE minimisation (and hence RE),

$$\Omega_{13} = -2\left(\frac{\sigma_{\varepsilon}^2 + \sigma_{\xi}^2 + \sigma_{\zeta}^2}{\sigma_{\varepsilon}^2 + \sigma_{\xi}^2}\right)\left(\frac{\theta - \theta^*}{\theta}\right)$$

 $\begin{array}{l} \Rightarrow \ \theta > \theta^* \ \text{iff} \ \Omega_{13} < 0 \\ \Rightarrow \ \text{Sizeable term premium under strategic complementarity} \end{array}$

Model

- More quantitative version of the model outlined just before
 - Labour supply endogenous (competitive labour market)

$$y_t = A_t L_t^{1-\alpha}$$

Household utility of more general form

$$u(c_{i,t}, l_{i,t}) = \frac{1}{1 - \sigma} \left(c_{i,t} - \chi_0 \frac{l_{i,t}^{1+\chi}}{1 + \chi} \right)^{1 - \sigma}$$

• Strategic complementarity through expectation formation in bond markets according to loss function with $\Omega_{12} = -2$ and $\omega = \Omega_{13}/(\Omega_{13} - 1)$, i.e.

$$(1-\omega)\mathbf{E}_{i,t}(\hat{\mathbf{E}}_{i,t}x_t-x_t)^2-\omega\mathbf{E}_{i,t}\left(\int_0^1\hat{\mathbf{E}}_{j,t}x_tdj\right)\hat{\mathbf{E}}_{i,t}x_t$$

Solution based on exact SDF rather than an approximation

Estimation approach

- US data, sample period 1999Q1-2017Q2
- Standard parameters calibrated (β , α , χ , χ_0)
- Remaining parameters estimated based on (simulated) method of moments
 - Parameters governing exogenous technology process $(\rho, \sigma_{\eta}, \sigma_{\varepsilon})$

 \Rightarrow Targets are the variance and first two autocovariances of detrended log consumption and variance of detrended log consumption growth

• Parameters governing forecast formation and risk aversion $(\sigma_{\xi} \ \sigma_{\zeta} \ \omega \ \sigma)$

 \Rightarrow Targets are the variance and autocovariance of the median forecast of productivity growth over the next ten years and term premium at one-year maturity

Figure: Forecasts of productivity growth from the SPF.

Notes: Solid line median, dashed lines lower and upper quartiles.

Parameter	Value	Description	Target (Data)	
β	0.9997	Discount factor	$i^{(4)} = 0.0205 - 0.0191$ (Treasury yields, Adrian et al. (2013), 4/1/99 - 30/6/17 Inflation expectations, SPF, 1999q1-2017q2)	
α	0.384	1 - Labour share	1-lpha= 0.6160 (Share of labour compensation in GDP, Penn World Table, 1999-2014)	
χ	0.708	Inverse Frisch elasticity	$Var(ln l_t)/Var(ln c_t) = 0.3428$ (Consumption of nondurables and services, BEA; Population and hours, BLS, 1999q1-2017q2)	
χ0	2.04	Labour utility weight	l = 1/3	

Table: Calibrated parameters

Parameter	Estimate	95% Confidence Interval	Description
ρ	0.90	[0.81, 0.99]	Shock persistence
σ_{ε}	$2.0 imes 10^{-3}$	$[9.7 \times 10^{-4}, 3.1 \times 10^{-3}]$	SD innovation to persistent tech. component
σ_{η}	8.0×10^{-4}	$[0, 2.4 \times 10^{-3}]$	SD i.i.d. transitory tech. component
$\sigma_{\mathcal{E}}$	9.9×10^{-5}	$[9.8 \times 10^{-5}, 1.0 \times 10^{-4}]$	SD innovation to common noise component
σ_c	2.2×10^{-3}	$[1.9 \times 10^{-3}, 2.5 \times 10^{-3}]$	SD innovation to idiosyncratic noise component
ω	0.80	[0.78, 0.82]	Strategic complementarity
σ	6.0	[5.7, 6.3]	Coefficient of relative risk aversion

Table: Estimated parameters

Moment	US data 1999Q1-2017Q2	Estimated model	Model with full information	$\begin{array}{l} {\rm Model \ with} \\ \omega = 0 \end{array}$
Targeted				
$\operatorname{Var}\left(\hat{\gamma}_{t}^{50}\right)$	1.52×10^{-5}	$1.42 imes 10^{-5}$	2.11×10^{-7}	4.68×10^{-8}
$\operatorname{Cov}\left(\hat{\gamma}_{t}^{50}, \hat{\gamma}_{t-4}^{50}\right)$	$1.25 imes 10^{-5}$	$9.29 imes10^{-6}$	$1.38 imes 10^{-7}$	3.06×10^{-8}
$\mathrm{E}\left(\hat{\gamma}_{t}^{75}-\hat{\gamma}_{t}^{25}\right)^{\prime\prime}$	5.32×10^{-3}	$5.40 imes 10^{-3}$	0	3.10×10^{-4}
$E\psi_t^{(4)}$	8.2 bps	8.2 bps	2.6 bps	1.0 bps
Not targeted				
$E\psi_{t}^{(8)}$	21.2 bps	16.0 bps	5.4 bps	2.0 bps
$E\psi_t^{(12)}$	34.5 bps	21.1 bps	7.6 bps	2.7 bps
F.a/1(16)	46.7 bps	24.4 bps	9.3 bps	3.3 bps
$E\psi_t^{(20)}$ $E\psi_t^{(20)}$	57.2 bps	26.7 bps	10.7 bps	3.7 bps

Table: Data and model moments

Estimation results

- Estimated beauty contest model
 - matches the moments related to consumption dynamics and volatility in hours almost perfectly
 - closely matches the moments targeted from the Survey of Professional Forecasters
 - delivers sizeable term premia, between 47 and 75 per cent of the nominal term premia in US data
- Model with full information (technology observed)
 - generates autocovariance in expectations that is two orders of magnitude too small
 - gives rise to term premia that are less than half of those in the beauty contest model
- Model without strategic complementarity ($\omega = 0$)
 - yields even lower autocovariance in expectations coinciding with even lower term premia

Conclusions

- The term premia contained in bonds of any maturity depend on autocovariance terms of the realisations and expectations of the stochastic discount factor
- Standard signal extraction problems in a representative agent framework generally do not give rise to sizeable term premia
- In a model with heterogeneously informed households and persistent noise, strategic complementarity in expectation formation can increase term premia
- An estimated model that allows for strategic complementarity is capable of explaining a substantial fraction of the term premia contained in the prices of US Treasuries

Proposition

Assume the law of iterated expectations holds and the stochastic discount factor m_{t+1} is in the household information set \mathcal{I}_{t+1} at time t + 1. The real term premium at maturity $n \in \{2, 3, ...\}$ is

$$\psi_t^{(n)} = \frac{1}{n} \sum_{k=0}^{n-2} \iota_t(k) \left[-\operatorname{Cov}_t \left(m_{t+k+1}, \prod_{j=k}^{n-2} m_{t+j+2} \right) + \operatorname{Cov}_t \left(\operatorname{E}_{t+k} m_{t+k+1}, \prod_{j=k}^{n-2} \operatorname{E}_{t+j+1} m_{t+j+2} \right) \right]$$

where

$$\iota_t(k) \equiv \begin{cases} 1 & \text{for } k = 0 \\ \prod_{j=0}^{k-1} E_t e^{-i_{t+j}} & \text{otherwise} \end{cases}$$

Lemma Assume the law of iterated expectations holds and the stochastic discount factor m_{t+1} is in the household information set \mathcal{I}_{t+1} at time t + 1. The unconditional mean real term premium at maturity $n \in \{2, 3, ...\}$ is

$$\begin{split} & \mathbf{E}\psi^{(n)} = \\ & \frac{1}{n}\sum_{k=0}^{n-2} \left\{ \mathbf{E}\left(\iota_{t}(k)\right) \left[-\mathbf{Cov}\left(m_{t+k+1},\prod_{j=k}^{n-2}m_{t+j+2}\right) + \mathbf{Cov}\left(\mathbf{E}_{t}m_{t+k+1},\mathbf{E}_{t}\prod_{j=k}^{n-2}m_{t+j+2}\right) + \\ & \mathbf{Cov}\left(\mathbf{E}_{t+k}m_{t+k+1},\prod_{j=k}^{n-2}\mathbf{E}_{t+j+1}m_{t+j+2}\right) - \mathbf{Cov}\left(\mathbf{E}_{t}m_{t+k+1},\mathbf{E}_{t}\prod_{j=k}^{n-2}\mathbf{E}_{t+j+1}m_{t+j+2}\right) \right] + \\ & \mathbf{Cov}\left[\iota_{t}(k),-\mathbf{Cov}_{t}\left(m_{t+k+1},\prod_{j=k}^{n-2}m_{t+j+2}\right) + \mathbf{Cov}_{t}\left(\mathbf{E}_{t+k}m_{t+k+1},\prod_{j=k}^{n-2}\mathbf{E}_{t+j+1}m_{t+j+2}\right) \right] \right\} \end{split}$$

•