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Basic Motivation

Will decentralized bargaining in labor markets get the “right”
people into the “right” jobs?

Frictions like search costs and asymmetric information can be an
impediment, but are there bargaining frictions too?

Even taking a very standard bargaining model, theory is
ambiguous—it depends on the solution concept.

Demands empirical evidence, but this is hard to come by.

Unobserved heterogeneity can rationalize any match as
efficient.

Hard to separate sources of inefficiency.

A laboratory experiment permits much greater control.
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Design Overview

Remove non-bargaining frictions but let agreements be reached
sequentially

Alternative matches provide then endogenous “outside
options”

Market composition evolves as agreements are reached

And bargaining positions can change

Theory suggests this might lead to mismatch

Does it?
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Bargaining Protocol

Extend the canonical Rubinstein bargaining model to markets.

Model outline:

Workers and firms in a market.

Matters who matches to whom—heterogeneous surpluses.

Each period, a player is selected at random to propose.

Chooses whom to propose to, and what offer to make.

Pair exit if proposal is accepted, otherwise remain in the
market.

Move to next period.

Discounting—game ends with probability 1% after each round.

We study three markets.
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Figure: Market with 4 players, 2 workers (a, b) and 2 firms (c, d). Worker
a can match to c, generating a surplus of 10, or to d generating a surplus
of 15, while b can only match to d thereby generating a surplus of 10. It
is efficient to a to match to c and for b to match to d.
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Figure: Market with 4 players, 2 workers (a, b) and 2 firms (c, d). Worker
a can match to c, generating a surplus of 10, or to d generating a surplus
of 25, while b can only match to d thereby generating a surplus of 10. It
is efficient to a to match to c and for b to match to d.



Market 3
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Figure: Market with 4 players, 2 workers (a, b) and 2 firms (c, d). Worker
a can match to c, generating a surplus of 10, or to d generating a surplus
of 30, while b can only match to d thereby generating a surplus of 10. It
is efficient to a to match to c and for b to match to d.



Features of the design

Across all the markets we consider:

There are only 4 players—minimal number required for
bargaining positions to evolve.

There is perfect information.

Discounting, which can be interpreted as a friction, is very
low.

An efficient and perfectly equitable match is feasible.

There is a corresponding extensive form game.

Efficiency in a subgame perfect equilibrium requires
increasingly complex strategies to be played.

In the Markov Prefect Equilibria, inefficiency (rate of
mismatch) increases across treatments.
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Theory: Basic principles for finding the MPE

In an MPE if an offer is rejected, we stay in the same state.

And so continuation values don’t change.

By perfection players make offers that are just acceptable.

So when proposing a player can get the maximum payoff of:

1 their continuation value (by delaying or making an
unacceptable offer);

2 the surplus from making a just acceptable offer to their
efficient match; or

3 if they have a second match the surplus from making a just
acceptable offer to their inefficient match.

An offer strategy profile pins down all continuation values.

Find a profile in which all offer strategies achieve their maximum.
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(b) Equilibrium

Figure: The unique Markov perfect equilibrium offer strategies are shown
in Panel (b). Whomever is selected to propose makes a just acceptable
offer to their efficient match with probability 1, and so there is no
mismatch in equilibrium.



Solving for the MPE

Players a and d are in symmetric positions. We call them the
strong players (subscript S).

Players b and c are in symmetric positions. We call them the weak
players (subscript W ).

Given the offer strategies shown in the previous slide the
continuation values of the players are:

VS =
1

4
(20− δVW ) +

3

4
δVS

VW =
1

4
(20− δVS) +

3

4
δVW

So, limδ→1 VS(δ) = limδ→1 VW (δ) = 10

Given these continuation payoffs, there is no profitable deviation.
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(a) Possible Matches.
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(b) Equilibrium (q ≈ 1/2)

Figure: The unique Markov perfect equilibrium offer strategies are shown
in Panel (b). Players (b) and (c) make just acceptable offers to their
efficient matches with probability 1, but players (a) and (d) mix between
offering inefficiently to each other and making efficient offers.



Solving for the MPE

Let W (δ) be the continuation value of players in subgames where
they are bargaining bilaterally with their efficient partners.

By Rubinstein (82) unique limit perfect equilibrium payoffs in these
subgames are limδ→1W (δ) = 10.

Let Vi be the continuation value of player i when no one has yet
been matched.

Given offer strategies shown we have the following system of
equations (including the indifference condition for mixing).

VS =
1

4

(
20− δVW + δ(1 + q)VS + (2− q)δW

)
VW =

1

4

(
20− δVS + (1− q)δVW + (2− q)δW

)
20− δVW = 25− δVS ,



Solving for the MPE

Solving the above system:

limδ→1 q(δ) =
16−
√
160

6 = 0.56,

limδ→1 VS(δ) = 11.45,

limδ→1 VW (δ) = 6.45.

Given these continuation payoffs, there is no profitable deviation.



Market 3
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(a) Possible Matches.
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(b) Equilibrium

Figure: The unique Markov perfect equilibrium offer strategies are shown
in Panel (b). Players (b) and (c) make just acceptable offers to their
efficient matches with probability 1, but players (a) and (d) make just
acceptable offers to each other leading to an inefficient match if one of
them is selected to propose.



Solving for the MPE

Given offer strategies shown we have the following system of
equations (including the indifference condition for mixing).

VS =
1

4

(
30− δVS + 2δVS + δW

)
VW =

1

4

(
20− δVS + δW

)

Solving the above system:

limδ→1 VS(δ) =
40
3 = 13.33,

limδ→1 VW (δ) = 25
6 = 4.17.

Given these continuation payoffs, there is no profitable deviation.



Source of inefficiency

Why don’t the MPE offer strategies in Game 15 constitute an
equilibrium in Game 25 or 30?

Suppose these strategies were played.

Then, one of the weak players would end up in a bilateral
bargaining subgame and get 10.

A weak players could then guarantee 10 by deviating and matching
second.

But then strong players would offer to each other.

If we start decreasing q, then VW decreases.

In Game 25 VW decreases until the strong players are indifferent.

In Game 30 there is a corner solution with q = 0.



Efficient Perfect Equilibria

Dropping the Markov restriction allows players to be punished and
rewarded.

In Game 25, Markov reversion creates sufficient incentives to
sustain efficient matches.

Strong players offer weak players their discounted MPE
continuation value.

If they reject, play switches to the MPE and they are no better off.

This increases strong players’ payoffs enough for them to not
deviate and mismatch.

But it is not enough in Game 30.



Efficient Perfect Equilibria

In Game 30 efficiency requires players to be punished and
rewarded.

Suppose a strong player deviates by offering to the other strong
player.

The receiver is rewarded for rejecting the offer, while the deviator
is punished.

These rewards and punishments are supported by the threat to
switch who is rewarded and punished.



Efficient Perfect Equilibria

On Path 

Punish 
C, D 

Punish 
A, B 

A or B Defect C or D Defect 

A or B  
Defect 

C or D  
Defect 

C or D  
Defect 

A or B  
Defect 

Notes: The average efficiency levels and the corresponding 95% confidence intervals
are reported for each game. Robust standard errors are obtained by clustering

observations by session.



Some of the most relevant theoretical papers

Non-cooperative bargaining in finite matching markets

Kranton and Minehart (00); Corominas Bosch (04); Gale and
Sabourian (06); Polanski (07); Okada (11); Abreu and
Manea (12a,12b); Polanski and Vega-Redondo (14); Elliott
and Nava (19).

Non-cooperative models in large matching markets

Rubinstein and Wolinsky (85, 90), Gale (87), Binmore and
Herrero (88), Gul (89), Moreno and Wooders (02); Manea
(11,13); Lauermann (13).

Cooperative models of bargaining in matching markets

Shapley and Shubik (71); Myerson (77); Crawford and Knoer
(81); Rochford (84); Demange et al (86); Bennett (88);
Elliott (14).
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Experimental Set up

Three treatments: Game 15 , Game 25, Game 30

In each session one market game is played 10 times

Focus on experienced games (last five times the game is
played)

Quiz about the rules of the game before experiment

Total 176 subjects

Game 15: 3 sessions with 40 subjects total

Game 25: 4 sessions with 68 subjects total

Game 30: 3 sessions with 68 subjects total

Groups and network places randomly assigned in each game

Discounting: 1% chance game ends each round.



Experimental Design Choices

1 How to pay players

hedging motives across games if more than one game is paid
Azrieli, Chambers and Healy (Journal of Political Economy,
2018)

2 Strategy Method

eliciting offers from all market participants before selecting
which one is implemented gives us 4 times more data
incentive compatible, b/c positive prob it will be implemented
for survey of the literature on strategy method see Brandts and
Charness (Experimental Economics, 2011)

3 Implementing Discounting

absent discounting, hold-up problem might occur
Frechette and Yuksel (Experimental Economics, 2017) evaluate
four ways to implemented discounting and random termination
in the lab experiments



Outline

1 Design Outline

2 Theory

3 Design Choices

4 Outcomes

5 Further analysis



Efficiency (experienced games)
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				Game	15							Game	25							Game	30	
Notes: The average efficiency levels and the corresponding 95% confidence intervals

are reported for each game. Robust standard errors are obtained by clustering
observations by session.



Statistical analysis

1Eff = β0 + β1 · 1Game25 + β2 · 1Game30 + β3 · 1Game15 · 1Strong First

+β4 · 1Game25 · 1Strong First + β5 · 1Game30 · 1Strong First + ε

Indicators:

1Eff (match reached is efficient)

1Game25 (Game 25 treatment)

1Game30 (Game 30 treatment)

1Strong First (proposer is a strong player)

Note: The coefficients (including joint hypothesis testing) of this
regression answer many questions.



Efficiency (experienced games)

Regression (1) Regression (2)

Dependent Variable Efficiency Efficiency

Constant (β0) 1.00∗∗∗ (0.00) 1.00∗∗∗ (0.00)
Game 25 (β1) −0.49∗∗∗ (0.03) -0.34∗∗∗ (0.03)
Game 30 (β2) −0.70∗∗∗ (0.01) -0.47∗∗∗ (0.04)
Strong First × Game 15 (β3) 0.00 (1.00)
Strong First × Game 25 (β4) -0.37∗∗ (0.09)
Strong First × Game 30 (β5) -0.49∗∗∗ (0.04)

# of obs n=197 n=197
# of clusters 10 10
R-squared 0.2841 0.4238

Notes: Linear regressions with standard errors clustered at the session level are
reported. The significance is indicated by ∗∗∗ and ∗∗ for 1% and 5% significance level.



Hypothesis tests for efficiency (experienced games)

Regression Null Hypothesis Alternative Hypothesis P-Value
Test 1 Regression (1) β0 + β1 = β0 + β2 β0 + β1 > β0 + β2 p < 0.0001
Test 2 Regression (2) β4 = β5 β4 > β5 p = 0.1042
Test 3 Regression (1) β0 + β1 = 0.72 β0 + β1 < 0.72 p < 0.0001
Test 4 Regression (1) β0 + β2 = 0.50 β0 + β2 < 0.50 p < 0.0001



Interpretation

1 Positive values of β1 and β2—efficiency is lower in Games 25
and 30 than Game 15.

2 Test 1—efficiency declines from Game 25 to Game 30.

3 Negative values of β4 and β5 in Regression (2)—efficiency is
lower when first proposer is strong in Games 25 and 30.

4 Test 2—first mover efficiency loss larger in Game 30.

5 Test 3—In Game 25 efficiency is lower than 72%
(lower than predicted by the MPE)

6 Test 4—In Game 30 efficiency is lower than 50%
(lower than predicted by the MPE)

Qualitative results (1-4) consistent with MPE and inconsistent
with efficient PE.

Quantitative results (5-6) inconsistent with MPE.



Payoffs by network positions (experienced games)
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Notes: The average payoffs and the corresponding 95% confidence intervals are
reported for each game. Robust standard errors are obtained by clustering

observations by session.



Statistical Analysis

Payoff = β0 + β1 · 1Game25 + β2 · 1Game30 + β3 · 1Game15 · 1Strong

+β4 · 1Game25 · 1Strong + β5 · 1Game30 · 1Strong

+β6 · 1Game15 · 1Exit First + β7 · 1Game25 · 1Exit First

+β8 · 1Gaeme30 · 1Exit First + ε

Indicators:

1Game25 (Game 25 treatment)

1Game30 (Game 30 treatment)

1Strong (Player is strong)

1Exit First (Player exited the market first)



Players’ payoffs in experienced games

Regression (3) Regression (4)
Dependent Variable Players’ Payoffs Players’ Payoffs

(all players) (strong players efficient matches)
Constant (β0) 10.04∗∗∗ (0.03) 9.97∗∗∗ (0.02)
Game 25 (β1) −5.53∗∗∗ (0.23) 0.13∗∗ (0.05)
Game 30 (β2) −7.68∗∗∗ (0.10) −0.02 (0.04)
Strong × Game 15 (β3) −0.07 (0.05)
Strong × Game 25 (β4) 7.26∗∗∗ (0.25)
Strong × Game 30 (β5) 11.81∗∗∗ (0.14)
Exit first × Game 15 (β6) −0.01 (0.02)
Exit first × Game 25 (β7) 2.21∗∗∗ (0.14)
Exit first × Game 30 (β8) 4.62∗∗∗ (0.23)
# of obs n = 788 n=218
# of clusters 10 10
R-squared 0.6977 0.8067

Notes: Linear regressions with robust standard errors clustered at the session level.
Regression (3) considers payoffs of all players, while Regression (4) focuses on the

payoffs of strong player (those with two links, players A and D) in the markets that
reached efficient outcome. Significance: ∗∗∗ and ∗∗ for 1% and 5% levels.



Hypothesis tests for players’ payoffs (experienced games)

Reg. Test Hypothesis P-Value
Null Alt.

Test 5 (3) β0 + β1 ? β0 + β2 = > p < 0.0001
Test 6 (3) β0 + β1 + β4 ? β0 + β2 + β5 = < p < 0.0001
Test 7 (4) β7 ? β8 = < p < 0.0001



Interpretation

1 β3 insignificant—no evidence strong players do better in
Game 15.

2 β4 and β5 positive—strong players receive higher payoffs than
weak players in Game 25 and Game 30.

3 Test 5—weak players get higher payoffs in Game 25 than
Game 30.

4 Test 6—strong players get higher payoffs in Game 30 than
Game 25.

5 β6—no evidence strong players do better moving first in Game
15.

6 β7 and β8 positive—strong players do better moving first in
Games 25 and 30.

7 Test 7—strong players relative benefit of moving first is larger
in Game 30 than in Game 25.

Qualitative results (1-7) all consistent with MPE.



Predicted versus observed payoffs in experienced games

Game 15 Game 25 Game 30
B (C) A (D) B (C) A (D) B (C) A (D)

Theories
MPE all 10 10 6.45 11.45 4.17 13.33
MPE | eff. 10 10 8.95 11.05 8.34 11.67
Reversion 10 10 8.75 11.25 — —
Carrot & Stick 10 10 (7 7

9
, 9 4

9
) (10 5

9
, 12 2

9
) (6 1

9
, 9 4

9
) (10 5

9
, 13 8

9
)

Data
all 10 10 4.5 11.8 2.4 14.2

(0.03) (0.03) (0.25) (0.10) (0.11) (0.05)
| efficient 10 10 8.8 11.2 7.7 12.3

(0.03) (0.03) (0.10) (0.10) (0.09) (0.09)

Notes: The first two rows under the category of Data report players’ payoffs and
robust standard errors in all the final outcomes, while the last two rows under the

category of Data focus on the groups that reached an efficient outcome.



Summary of results

The MPE organizes the data well qualitatively, and does a
better job than the efficient PE.

The MPE does not do so well quantitatively.

There is substantial mismatch—quantitatively this is higher
than predicted by the MPE.
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Are there systematic deviations from the MPE?

If so, what are they and can an extended theory explain the
data better?

Studying strategies some weak players demand equitable
splits. Incorporating this into the MPE improves the fit with
the data.

Can learn from the literature here on the ultimatum
game—some people demand equality.

See Weg et al. (1990) and Kagel et al. (1996).
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What drives the inefficiencies?

What is driving the substantial inefficiencies?

Could it be the protocol—with more flexibility would subjects
reach efficient outcomes?

Run a protocol free experiment. Efficiency is improved, but
remains substantial.

Could it be the non-stationarity—with reneging the
environment is more stationary, would this improve efficiency?

Run an experiment with reneging. Efficiency is improved, but
some remains.
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Cooperative Vs Non-cooperative Theory

Focus of this paper has been on the dynamics and how this
impacts efficiency.

Have focused on non-cooperative theories.

Cooperative theories are typically static and efficient.

e.g., Core, nucleolus, kernel, Pre-kernel, symmetrically
pairwise bargained allocations (Rochford, 1984).

But interestingly sociology experiments tend to support core
allocations.

e.g., Cook et al. (1978), Cook et al. (1983), Bienenstock and
Bonacich (1993), Skvoretz and Willer (1993).

There is a nice albeit brief discussion in Jackson (2010).

Focus on different questions, but setup is typically:

protocol free with reneging.
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